Thomas Vojta Research Teaching Pegasus Downloads
Missouri S&T Physics Department

Physics 5413 - Chaos and Nonlinear Dynamics

Overview

Course description

Syllabus

Projects

Due date Project Description Files
Aug 29, 2024 Project 1 Project files
Sep 12, 2024 Project 2 .
Sep 26, 2024 Project 3 .
Oct 10, 2024 Project 4a or Project 4b Project 4b files
Oct 24, 2024 Project 5 .
Nov 7, 2024 Project 6 .
Nov 21, 2024 Project 7 .
Dec 12, 2024 Final Project .

Examples and extra material

Chapter 1 - What is chaos?

Logistic map: Time evolution
Logistic map: Bifurcation diagram
Comparison of the bifurcation diagrams of the logistic and sine maps
Renormalization of the logistic map
Lorenz attractor
Double pendulum
Driven damped pendulum
Bifurcation diagram of driven damped pendulum

Chapter 3 - Dynamics in state space

Chemical oscillations, part of the IDEA project at Washington State Univ.
Van der Pol oscillator, Rayleigh oscillator (Wolfram cdf files, require free Wolfram Player)

Chapter 4 - Three-dimensional state space and chaos

Lorenz attractor
Saddle cycle
Homoclinic and heteroclinic tangles
Horseshoe map

Chapter 5 - Iterated maps

Lyapunov exponent of the logistic map
U-sequences
Gaussian map

Chapter 6 - Quasi-periodicity and chaos

Periodic vs quasiperiodic motion
Sine-circle map: fixed points, limit cycles,quasiperiodic motion
Arnold tongues
Devil's staircase
Farey tree
Sine-circle map: Chaos
Sine-circle map: Lyapunov exponent

Chapter 7 - Intermittency and crises

Intermittency in the logistic map, and in the Lorenz model
Mechanism of intermittency
Crisis in the logistic map

Chapter 8 - Fractal dimensions

Coastline of Norway (Map of Europe)
Covering the coastline, fractal dimension
Koch curve, Sierpinski triangle, Sierpinski carpet
Correlation dimensions of chaotic attractors
Multifractal electronic wave function (courtesy Rudolf Roemer)
Percolation applet
Simulation data for the fractal dimension of the critical percolation cluster

Gnuplot

The Web site for plotting program Gnuplot is www.gnuplot.info.