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ABSTRACT

We explore the phase transition in the diluted quasi-one-dimensional quantum Ising

model. We begin by giving an introduction to the Ising model followed by derivations of

the properties and observables. A brief overview of Monte-Carlo simulations, is also given

focusing on two algorithms that make simulations for physically realizable systems possible,

the Metropolis and Wol� algorithms. We �nally discuss the concept of random-disorder in

the system and the e�ects this can have on the bulk of the system.

These concepts are then directly applied to a quasi-one-dimensional Ising model.

Motivated by recent experiments on the spin-chain material cobalt niobate, we construct a

quasi-one-dimensional quantum Ising model with anisotropic spatial interactions. We �rst

consider the classical case. Using Monte Carlo simulations, we study its properties under

site dilution.

We then consider the quantum phase transition which is driven by a transverse

magnetic �eld. To do so, we map the transverse-�eld quantum Ising model to a 4D classical

model, which we again study via Monte Carlo simulations.
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1. INTRODUCTION

Physical systems become greatly more complicated once the number of particles

# exceeds2. For a realistic description of macroscopic systems,# must be increased by

several orders of magnitude. Macroscopic systems feature distinct phases (uniform states

of matter) and have phase transitions that separate them. In this section, I will introduce

the elementary concepts of phase transitions and their applicability in more detail. In

this thesis, we are particularly interested in a lattice-bound ferromagnet. Thus I will also

introduce the Ising model which is a minimal model that describes the magnetic properties

of a lattice-bound uniaxial ferromagnet. I will derive its basic thermodynamic properties

through the canonical ensemble and introduce the Monte Carlo algorithms that permit

e�cient computer simulations. I will �nally introduce the concept of random dilution, its

representation in an Ising model, and its e�ects on the phase transitions.

1.1. PHASE TRANSITIONS

A phase transition is constituted by the abrupt change in a macroscopic system's

properties when probed by a change of external control parameters. Key properties charac-

terizing phases include, for example, the physical structure, magnetism, and conductivity [1].

Control parameters are related to the external conditions or environment for our system. For

example, changes in the temperature, pressure, and magnetic �eld can cause a system to

undergo a phase transition. This is observed in many physical processes in nature including

the system we will study in this thesis.

Familiar examples of phase transitions are the changes in the physical structure

of water. When the control parameter, temperature) , approaches0� C from below, the

physical lattice structure of water breaks down into a liquid. At100� C, the liquid undergoes

another phase transition to become a gas. These transitions in water are known as 1st-order

transitions, characterized by a discontinuous change of the density and by latent heat. A
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second example of a phase transition occurs in a ferromagnetic material. Here, a change in

the control parameter) leads to a change in its magnetic phase. Above a certain critical

temperature) 2, this material will exhibit a paramagnetic phase, which physically corresponds

to the magnetic dipoles in the material pointing in random directions. Below) 2 the material

has a ferromagnetic phase that physically has the magnetic dipoles pointing parallel to one

another in the same direction. In contrast to the change in density at the phase transitions

of water, the magnetization changes continuously at the ferromagnetic critical temperature,

which characterizes a continuous, or 2nd-order transition. Continuous transitions will be

discussed in more depth throughout this section and this thesis.

We can better understand the phases of a ferromagnetic system for a given con�gura-

tion of sites and moments by introducing the magnetic order parameter®< ,

®< =
1
#

#Õ

8=1

h®B8i • (1.1)

This is de�ned as the normalized sum of spin vectors over all sites in our system. Here,

h• • •i denotes the thermodynamic average. When the system is fully ordered, the magnetic

moment for all sites will be identical and the sum will take its maximum value. Contrarily,

for the fully disordered system, we can expect the value of the spins to be completely random.

They thus cancel each other, and the system becomes a paramagnet with®< = 0

1.2. ISING MODEL

The Ising model is a simple mathematical model that can describe ferromagnetic and

antiferromagnetic systems [2]. We want to consider, in particular, a system of# sites located

on a3-dimensional hypercubic lattice as illustrated in Figure 1.1. Each site is occupied by a

spin. We allow these spins to interact with each other.� 8 9denotes the interaction energy

between the spins at sites8and 9.
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Figure 1.1. Hypercubic lattice for3 = 1–2–3. The principle site is the green dot in the center
of each lattice. Un�lled dots are the nearest neighbors to this site. In3 dimensions, the
number of nearest neighbors is 23.

In typical insulating magnets, the interaction strength decreases exponentially with

distance [3], allowing us to disregard the interactions from sites that are not nearest neighbors.

The Ising model describes the limit of a uniaxial magnet. The spins can therefore be

represented by classical variables that take valuesf 8 = � 1. We can now write the de�ning

Hamiltonian for the Ising model [4] as,

� = �
Õ

Ÿ8 9¡

� 8 9f 8f 9 � `�
Õ

8

f 8 (1.2)

The �rst term is a summation over all pairs of nearest neighbors. (Figure 1.1 illustrates how

the number of nearest neighbors increases, as our system goes to higher dimensions.)

The sign of the interaction� 8 9distinguishes ferromagnetic and antiferromagnetic

systems. For ferromagnets, neighboring spins prefer to be parallel to each other. This means

� 8 9¡ 0so that the energy is minimized whenf 8 = f 9. Analogously, that for antiferromagnets

the interaction,� 8 9Ÿ 0, which minimizes the energy when we have anti-parallel spin pairs

f 8 = � f 9. The second term in our Hamiltonian is a summation over all individual sites. This

term describes the interaction between the spins and an external magnetic �eld� . ` is the

magnetic moment associated with a spin. In the next sections we will discuss solutions of

the Ising model for one and two dimensions. No exact solution exists above two dimensions,

but we can obtain approximate results via computer simulations.
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1.2.1. One Dimension. The one-dimensional Ising model is known to have an

exact solution. We will now summarize this solution and calculate, for later use, some

quantities, which are characteristic of one-dimensional magnetic behavior. This behavior

is fundamental to understanding weakly coupled spin chains in higher dimensions, as we

will see in section 2. Our solution will follow the transfer matrix approach [5] which is

simple and has a natural, albeit rigorous, generalization to two dimensions [6]. Consider a

one-dimensional Ising chain, as shown for the leftmost structure in Figure 1.1. We enforce

periodic boundary conditions (PBC), which e�ectively turns the chain into a closed loop

f # ¸ 8 = f 8• (1.3)

We can then put together the canonical partition function for an Ising chain of# sites,

/ =
Õ

f 1=� 1

Õ

f 2=� 1

Õ

f 3=� 1

� � �
Õ

f # =� 1

exp¹� V� º =
#Ö

8

Õ

f 8=� 1

exp¹� V� º• (1.4)

The Hamiltonian of the Ising chain can be written in a symmetric form:

� = � �
#Õ

8

f 8f 8̧ 1 �
`�
2

#Õ

8=1

¹f 8¸ f 8̧ 1º– (1.5)

where we have assumed a uniform interaction strength between nearest neighbors for all

sites. Recall for a moment thatf 8 = � 1. We can de�ne matrix elements of an operator�̂ via

hf 8j �̂ jf 8̧ 1i = exp¹V�
#Õ

8

f 8f 8̧ 1 ¸ `�
#Õ

8=1

¹f 8¸ f 8̧ 1ºº• (1.6)

This2 � 2 matrix is known as the transfer matrix. We can express the partition function in

terms of the matrix elements as,

/ =
Õ

f 8=� 1

Õ

f 8=� 2

� � �
Õ

f 8=� # � 1

Õ

f 8=� #

hf 1j �̂ jf 2i • • •hf # � 1j �̂ jf # ihf # j �̂ jf 1i
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=
Õ

f 1=� 1

hf 1j �̂ # jf 1i = )A¹�̂ # º• (1.7)

The trace of this matrix is invariant under a similarity transformation [7]. So, we can express

/ in terms of the eigenvalues of̂�

/ = )A¹�̂ # º = _#
1 ¸ _#

2 • (1.8)

We obtain the eigenvalues by solving the eigenvalue equation,

det¹� � _� º =

�
�
�
�
�
�
�

h¸1j�̂ j ¸ 1i � _ h¸1j�̂ j � 1i

h� 1j�̂ j ¸ 1i h� 1j�̂ j � 1i � _

�
�
�
�
�
�
�

=

�
�
�
�
�
�
�

exp¹V¹� ¸ºº � _ exp¹� V�º

exp¹� V�º exp¹V¹� �ºº � _

�
�
�
�
�
�
�
= 0

•

(1.9)

This leads to,

_2 � _ exp¹V�º¹2 cosh¹2`�V ºº ¸ 2 sinh¹2V�º = 0• (1.10)

Solving for_ results in,

_ = exp¹V�º cosh¹2`�V º � ¹ exp¹� 2V�º ¸ exp¹2V�º sinh2¹`�V ºº1•2• (1.11)

We now have two eigenvalues denoted by_1 and_2

_1 = exp¹V�º cosh¹`�V º ¸ ¹ exp¹� 2V�º ¸ exp¹2V�º sinh2¹`�V ºº1•2– (1.12)

_2 = exp¹V�º cosh¹`�V º � ¹ exp¹� 2V�º ¸ exp¹2V�º sinh2¹`�V ºº1•2• (1.13)
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Figure 1.2. Dependence of the eigenvalues_1 and_2 on the inverse temperatureV and
external �eld � . All other parameters are taken to be constant,� = 1, � = 1 (left) andV = 1,
� = 1 (right).

Comparing the two equations, it is clear that_1 ¡ _ 2 as can also be seen in Figure 1.2, where

we plot_1 and_2 as functions of the inverse temperatureVand external magnetic �eld� .

Both terms in the partition function (1.8) grow exponentially with# . In the thermodynamic

limit, as # �! 1 ,
_#

2

_#
1

�! 0. For macroscopic systems, the physical properties will therefore

be dominated by_1,

/ � _#
1 • (1.14)

From here, calculating thermodynamic quantities is relatively straightforward. Since we are

interested in the magnetic properties of this system studying the magnetization is the most

advantageous to �nd the transition temperature.

We start by calculating the Helmholtz free energy� :

� ¹�– ) º =
� 1
V

ln¹/ º– (1.15)

= �
1
V

ln»¹exp¹V�º cosh¹`�V º ¸ ¹ exp¹� 2V�º ¸ exp¹2V�º sinh2¹`�V ºº1•2¼# –

= � #� �
#
V

ln¹cosh¹`�V º ¸ ¹ exp¹� 4V�º ¸ sinh2¹`�V ºº1•2º• (1.16)
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(a) (b)

Figure 1.3. Dependence of the magnetization< on Vand� . (a) Magnetization vs. inverse
temperatureV. � = 1 and� = 1 are treated as constants. (b) Magnetizations vs. applied
�eld � . V = 1 and� = 1 are treated as constants.

� is related to the magnetization< at constant) ,

< ¹�– ) º = �
1
#

�
m�
m�

�

)
=

` sinh¹`�V º

¹exp¹� 4V�º ¸ sinh2¹`�V ºº1•2
• (1.17)

Before we calculate the susceptibility we will analyze this magnetization expression. We

can infer a lot from this quantity about how the system's magnetic behavior changes with

an applied �eld� and inverse temperatureV. Looking at this function illustrated in Figure

1.3, right away we can see as� �! 0, for all �nite V, < �! 0 which indicates that there is no

phase transition manifested in the system for �nite) . Instead, the system is always in the

paramagnetic phase. However if reduce temperature such thatV �! 1 for all nonzero� , the

magnetization takes the value,

< ( = `– (1.18)

where< ( is called the saturation magnetization. This is the maximum magnetization our

system can produce and indicates that the system is in a state of perfect order. Thus, there

is a transition that has the critical temperature) 2 = 0! We can now obtain the magnetic



8

susceptibility from,

j =
m

m�
< =

m
m�

` sinh¹`�V º

¹exp¹� 4V�º ¸ sinh2¹`�V ºº1•2
• (1.19)

=
` 2Vexp¹� 4V�º cosh¹`V� º

¹exp¹� 4V�º ¸ sinh2¹`V� ºº3•2
• (1.20)

We are especially interested in the low-�eld regime in this work, so we let� �! 0. We can

immediately statecosh¹2`V� º �! 1 and,sinh2¹2`V� º �! 0. This gives an expression for

the temperature dependence of the 'low-�eld' susceptibility

j ¹) º =
` 2Vexp¹� 4V�º
¹exp¹� 4V�ºº3•2

= ` 2Vexp¹� 2V�º• (1.21)

which we will use to characterize the 1D e�ects we see in more complex systems later in

this work. We can see that the zero-temperature transition is also re
ected in this quantity by

the distinct singularity ofj at ) = 0.

1.2.2. Two Dimensions. In this section, we will show the exact solution in3 = 2

(the only other dimension with an exact solution). To visualize this system, instead of a

single one-dimensional chain, we can imagine a series of these chains, all connected by

additional exchange interactions. If we wrap all of these chains around, like we did for

the one-dimensional case, the shape of the two-dimensional case with periodic boundary

conditions in both directions appears like a torus. Figure 1.4 illustrates this shape.

We can attack the two-dimensional case with a transfer matrix approach analogous to

the one-dimensional case. However, this approach isveryinvolved mathematically compared

to the one-dimensional case [8]. An exact solution can only be found in zero �eld. The

canonical partition function for the two-dimensional Ising model without �eld was given

exactly �rst by Onsager [9] and then through the transfer matrix approach by Kaufamn and
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Figure 1.4. A 2D lattice with periodic boundary conditions represented as torus shape.

Onsager [10]. The exact solution for the free energy can be expressed as,

� V� = ln¹2º¸
1

8c2

¹ 2c

0
3\ 1

¹ 2c

0
3\ 2 ln»cosh2¹2V�º� sinh¹2V�º cos¹\ 1º� sinh¹2V�º cos¹\ 2º¼•

(1.22)

In contrast to one dimension, this solution features a phase transition at a �nite temperature

) 2 de�ned by,

sinh2¹2�V2º = 1• (1.23)

Solving for) 2 yields

) 2 = 2•269185
�

 �
• (1.24)

Close to) 2, the behavior of observables in Onsagers solution is governed by power laws.

For example, the magnetization behaves as

< � j ) � ) 2jV (1.25)
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whereV = 1•8 is the order parameters critical exponent. Analgously, the susceptibility

follows the relation

j � j ) � ) 2j� W (1.26)

whereW= 7•4 is the susceptibility exponent. Similarly, the correlation length scales

according to the function

b � j ) � ) 2j� a (1.27)

wherea = 1 is the correlation length exponent. This wraps up the analytical solutions that

can be obtained for the Ising model. Results for3 ¡ 2 can only be found via approximate

methods or computer simulations such as Monte Carlo simulations. In the next section, we

will introduce these methods, and how we can employ them to accurately approximate the

behavior of our system.

1.3. MONTE CARLO SIMULATIONS

In higher dimensions,3 ¡ 3 the Ising model cannot be solved exactly. In this section,

we introduce Monte Carlo methods for the Ising model. These methods permit an e�ective

evaluation of thermodynamic quantities as our only limitation becomes computational e�ort.

According to statistical mechanics, the probability of a particular spin con�guration

®f = ¹f 1– • • • – f# º in thermal equilibrium is given by the Boltzmann distribution,

%� ¹®f º =
1
/

exp¹� V� ¹®f ºº• (1.28)

Now let us consider the average of some generic observable� ¹®f º

h� ¹®f ºi ) =
1
/

¹
exp¹� V� ¹®f ºº� ¹®f º3G• (1.29)
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In a Monte Carlo simulation, we replace the sum over all spin con�gurations,®f by a sum over

a randomly chosen subset of" spin con�gurations. If the probability of a spin con�guration

to be in the subset is%¹®f º–the average of an observable can be written as

h� ¹®f ºi =

Í "
;=1 exp¹� V� ¹ ®f ;º � ¹ ®f ;º•%¹ ®f ;ºº

Í "
;=1 exp¹� V� ¹®f º•%¹®f ºº

• (1.30)

If we choose%¹f ;º to be the Boltzmann probability%� ¹f ;º, we can see then this expression

easily reduces to

h� ¹®f ;ºi =
1
"

"Õ

;=1

� ¹®f ;º• (1.31)

We are now left with the question of how to generate such a representative subset of spin

con�gurations with the correct Boltzmann probability. In the next section, we will discuss

the work of Metropolis and coworkers as well as their algorithm which is instrumental in this

thesis. We will then further discuss an algorithm by Wol� that increases our computational

e�ciency, in addition to a discussion on calculating observables.

1.3.1. Metropolis Algorithm. The Metropolis [11] algorithm is based on the idea

of generating the desired subset of spin con�gurations as a Markov Chain [12]. This means,

given a state®f ; we can construct each successive state,®f ;0 based on the previous state and

some transition probability. Let us denote the transition probability as, ¹®f ; �! ® f ;0º. In the

steady state, the probability%¹®f ;º of state®f ; to appear in the Markov chain ful�lls

%¹®f ;º, ¹f ; �! ® f ;0º = %¹®f ;0º, ¹®f ;0 �! f ;º (1.32)

which gives the detailed balance condition,

, ¹f ; �! f ;0º
, ¹f ;0 �! f ;º

=
%¹f ;0º
%¹f ;º

• (1.33)
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If we wish the probabilities%¹®f º to be Boltzmann probabilities, this implies

, ¹f ; �! f ;0º
, ¹f ;0 �! f ;º

=
exp¹� V� ¹ ®f ;0ºº
exp¹� V� ¹ ®f ;ºº

= exp¹� V¹� ¹ ®f ;0º � � ¹ ®f ;ººº = exp¹� V¹� � ºº• (1.34)

Here� � is the change in the Hamiltonian when we update the con�guration.

We are now in a position to explicitly describe the steps our Metropolis algorithm

takes for a single update of our Ising model, see Table 1.1. Figure 1.5 gives an example of

a 2D lattice of sites being indexed by the Metropolis algorithm. To de�ne the transition

probabilities, we need to consider two cases for� � , � � � 0 and� � ¡ 0. Beginning with

the case� � � 0, the set, ¹®f ; �! ® f ;0º = 1. The reversed update is that where� � ¡ 0 such

that, ¹f ;0 �! f ;º = exp¹� V¹� � ºº. Our ratio is thus

, »f ; �! f ;0¼
, »f ;0 �! f ;¼

=
1

exp¹V¹� � º
= exp¹� V¹� � ºº (1.35)

as required by the detailed balance condition (1.30)! The Metropolis algorithm is thus a

valid Monte Carlo algorithm. However, it becomes ine�cient for larger systems at higher

dimensions, especially close to the phase transition where the spin con�guration contains

large chunks of parallel spins. This phenomenon is called critical slowing down. Because of

critical slowing down, the number of Monte Carlo sweeps (attempted 
ips per site) required

for equilibration increases very fast, approximately proportional to! 2, close to the phase

transition. To overcome the critical slowing down we will now introduce the Wol� algorithm.

Table 1.1. Steps of a single iteration of the Metropolis algorithm.

Step Description
1 Choose a site:Select a single site at random with random number generator

2
Calculate � � : Compute the change in the energy� � caused by 
ipping the spin at
the chosen site.

3 If � � � 0: Flip the spin!
4 If � � ¡ 0: Flip the spin with probability exp¹� V� � º.
5 Repeat: Loop back to step 1 and repeat the procedure.
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Figure 1.5. 2D lattice illustrating a single Metropolis spin-
ip update for a randomly indexed
site (x). The nearest neighbors of this site are connected via thick solid lines. The solid dots
representf 8 = ¸ 1, hollow dots (including the chosen site) representf 8 = � 1.

1.3.2. Wol� Algorithm. The second Monte Carlo algorithm that we employ

in this thesis is the Wol� algorithm [13]. This algorithm is still a Markov chain spin-
ip

algorithm like the Metropolis algorithm. However, rather than 
ipping individual spins,

the Wol� algorithm instead clusters identical spins, reducing the computational cost of our

simulations for physically realizable systems. Speci�cally, it reduces the critical slowing

down near the phase transition, which we observe when using the Metropolis algorithm. To

derive the Wol� algorithm, we de�ne two types of sites with respect to the site randomly

selected as the start site of a cluster.f ¸ sites have a spin value that makes them parallel to

the initial site.f � , on the other hand, are sites that have a spin value in the opposite direction.

The Wol� algorithm iteratively considers the neighbors of sites belonging to the cluster,

adjacentf ¸ sites are bonded into the cluster� with probability ?¸ ,

?¸ = 1 � exp¹� 2V�º• (1.36)
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The corresponding bond is de�ned as an 'accepted' link, Figure 1.6 gives an example of a

cluster forming with a set of these links. We denote a given cluster by� and its border by

m� . The probability that a link between twof ¸ sites will not be activated is given by

@̧ = 1 � ?¸ = exp¹� 2V�º• (1.37)

The complete probability for the construction of the cluster for an update in the con�guration

is

, »f ; �! f ;0¼= ?8¹
Ö

< ¸ 2�

?¸ º¹
Ö

< ¸ 2m�

@̧º (1.38)

where?8 is the probability of selecting a particular starting site.< ¸ counts links betweenf ¸

sites, while< � counts links between opposite spins. The reversed update will still involve

the same cluster� . It is clear that the probability?8will be the same in both cases. We can

write out the reversed probability for the reversed update as

, »f ;0 �! f ;¼= ?8¹
Ö

< ¸ 2� 0

?¸ º¹
Ö

< ¸ 2m� 0

@̧º• (1.39)

Table 1.2. Steps of a single iteration of the Wol� algorithm.

Step Description
1 Choose a site:Select a single seed site at random with random number generator

2
Construct cluster: Consider all nearest neighbors connected to initial site. If
a neighbor spin is parallel to the seed spin, add to cluster with probability?¸ =
1 � exp¹� 2Vº

3 Continue construction: Consider the set of sites added in the previous update.
Repeat step 2 for each of these sites.

4 Further continue construction: Continuously apply step 3
for each subsequent update until no new sites are added by the update.

5 Flip and Repeat: Flip entire cluster and proceed back to step 1 to construct
a new cluster.
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We can write the ratios of these probabilities as

, »f ; �! f ;0¼
, »f ;0 �! f ;¼

=
¹
Î

< ¸ 2� ?¸ º¹
Î

< ¸ 2m� @̧º

¹
Î

< 0
¸ 2� 0 ?¸ º¹

Î
< 0

¸ 2m� 0 @̧º
• (1.40)

Viewing Figure 1.6 can help visualize the two updates we're discussing. The< ¸ links

making up the internal part of the cluster� , will be the same exact< ¸ links making up the

internals of the updated cluster� 0. This makes our products of probability?¸ equal for both

clusters so that our ratio becomes

, »f ; �! f ;0¼
, »f ;0 �! f ;¼

=
¹
Î

< ¸ 2m� @̧º

¹
Î

< 0
¸ 2m� 0 @̧º

=
exp¹� 2V�# ¸ º
exp¹� 2V�# 0

¸ º
(1.41)

where# ¸ denotes the number of< ¸ border links. However, for the border of our cluster

m� , the links< ¸ are instead the links< � for the updated clusterm� 0. We can write this

mathematically as

exp¹� V�# ¸ º = exp¹V�# 0
� º

exp¹� V�# 0
¸ º = exp¹V�# � º•

(1.42)

Figure 1.6. Wol� algorithm cluster formation example where all links are activated. Accepted
links are bolded and encapsulated by the highlighted dotted line which form the cluster.
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This allows us to write the ratio as

, »f ; �! f ;0¼
, »f ;0 �! f ;¼

=
exp¹� V�# ¸ º exp¹� V�# ¸ º
exp¹� V�# 0

¸ º exp¹� V#0
¸ º

=
exp¹� V�# ¸ º exp¹V�# 0

� º
exp¹� V�# 0

¸ º exp¹V�# � º

=
exp¹V�# 0

¸ º exp¹V�# 0
� º

exp¹V�# ¸ º exp¹V�# � º

=
exp¹V�# 0º
exp¹V�# º

•

(1.43)

The contribution of the boundary sites to the total energy is� ¹f ;º = � �# . Applying this,

we obtain the same condition for the ratio of probabilities for the Metropolis case

, »f ; �! f ;0¼
, »f ;0 �! f ;¼

= exp¹� V� � º• (1.44)

The update and reversed update both 
ip the same exact internal sites with one another

which is what makes the above result possible. The only changes between these two updates

will be exclusively at the boundary links for each cluster. Thus, the Wol� algorithm ful�lls

the detailed balance condition (1.33) and is thus a valid Monte Carlo algorithm. The Wol�

algorithm greatly improves the critical slowing down, the required number of sweeps is only

weakly dependent on system size.

1.3.3. Numerical Results for Higher Dimensional Ising Model. The 3D

Ising model has yet to be solved exactly [8]. However, we can study it, along with lower-

dimensional models using Monte Carlo Simulations. Di�erent from the 2D case, which can

be de�ned on a! G� ! H square lattice, the 3D case can be de�ned on a cubic lattice with

dimensions! G� ! H� ! I . Consequently, the number of nearest neighbors for a given site has

also increased from4 to 6. Unlike the 1D and 2D cases, the periodic boundary conditions are

not as simple to visualize through a 'chain' or 'torus'. This does not mean we can not enforce

them, though, and it is easiest to express it mathematically. Denoting the spin< coordinates

G– H– Iby f ¹G– H– Iº, the periodic boundary conditions readf ¹G¸ ! G– H– Iº = f ¹G– H– Iº and
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