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ABSTRACT

Nonequilibrium systems can undergo continuous phase transitions between dif-

ferent steady states. These transitions are characterized by collective fluctuations

over large distances and long times similar to the behavior of equilibrium critical

points. They also can be divided into different universality classes according to their

critical behavior.

This dissertation considers two types of nonequilibrium transitions. First study

concerns absorbing state transitions on a randomly diluted lattice. Second study

deals with nonequilibrium models with several absorbing states. We investigate two

specific nonequilibrium lattice models, i.e., the contact process and the generalized

contact process by means of both theoretical and computational approaches.

In section 1, we introduce the basic arguments and theories to support our in-

vestigations for both problems. In sections 2 and 3, we investigate nonequilibrium

phase transitions of the contact process and the generalized contact process on a per-

colating lattice, focusing on the transition across the lattice percolation threshold. In

this study, we show that the interplay between geometric criticality due to percolation

and dynamical fluctuations of the nonequilibrium system leads to a new universality

class. The critical point is characterized by ultra-slow activated dynamical scaling and

accompanied by strong Griffiths singularities. We support our theory by extensive

Monte-Carlo simulations. In sections 4 and 5, we investigate the generalized contact

process on one and two-dimensional lattices. We treat the creation rate of active sites

between inactive domains as an independent parameter. It turns out that this model

has an unusual phase diagram with two different nonequilibrium phase transitions.

The special point separating them shares some characteristics with a multicritical

point. For one dimension, a small boundary rate takes the system from the directed

percolation universality class to the parity-conserved class. For two dimensions, the

critical behavior on the generic transition line is of mean-field type with logarithmic

corrections suggesting that the two-dimensional generalized contact process is in the

generalized voter universality class.



vi

ACKNOWLEDGMENT

First of all, I sincerely thank to Dr. Thomas Vojta. His name was very big and

admirable to me during past six years. His passionate teaching led me to physics and

his affectionate supports were able to make me study in Rolla. It was impossible to

finish my doctorate program without him. I owe a deep gratitude to him and his

family. Many Thanks to my advisor Dr. Vojta again.

My gratitude goes to my committee members: Dr. Gerald Wilemski, Dr. Julia

E. Medvedeva, Dr. Paul E. Parris, and Dr. Uwe C. Tauber. I took many helps from

Dr. Parris, Dr. Wilemski, and Dr. Medvedeva. Their advices for physics inspired

me and their suggestions were valuable enough to finish my doctorate program. Dr.

Tauber is one of master maestros in my research field. It was really good to me that

he was one of my committee member. Thanks for your joining from Virginia. Many

thanks to all committee again.

I wish to thank our chairman, Dr. George D. Waddill, and staffs: Ellen Marie

Kindle, Pamela J. Crabtree, and Russell L. Summers. They helped and took care

of me for my school life. Thanks very much! Also I want to thank Dr. Jose Hoyos,

Chetan Kotabage, Ben Payne, and Dr. Vojta’s research group members. It was very

useful and joyful to discuss with them concerning about physics and other interesting

topics.

Finally many thanks go to my parents for their endless love and support. Their

true love and strong trust made me always to keep my faith and road. I owe a deep

gratitude and love to them. I really want to say in here that I love you and I devote

my doctoral degree to you. I wish to thank my brother, Cheonyoung, and my sister’s

family: Jisook, Giyeol, and their children: Yeonseo and Yejoon are the source of my

smile. Their concerns for an elder brother have allowed me to sustain over long time.

I love my family (Sarang hapnida woori gajokeul.....).



vii

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENT .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

SECTION

1. INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. EQUILIBRIUM PHASE TRANSITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Phase transitions in magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2. Landau theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3. Fluctuations and Ginzburg criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4. Landau-Ginzburg-Wilson theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.5. Universality class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. SCALING THEORY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1. Scaling properties near the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. PERCOLATION THEORY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1. Site percolation on a lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2. Distribution of finite-size clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3. Criticality and scaling of percolating clusters . . . . . . . . . . . . . . . . . . . . . 13

1.3.4. Fractal dimension of the percolating cluster . . . . . . . . . . . . . . . . . . . . . . 15

1.4. NONEQUILIBRIUM PHASE TRANSITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1. The contact process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2. Critical phenomena of the contact process . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.3. Mean-field approximation for the contact process . . . . . . . . . . . . . . . . 20

1.4.4. Universality class-Directed percolation (DP). . . . . . . . . . . . . . . . . . . . . . 22

1.4.5. Generalized contact process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.6. Universality class of the generalized contact process . . . . . . . . . . . . . 24

1.5. SUMMARY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



viii

BIBLIOGRAPHY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2. NONEQUILIBRIUM PHASE TRANSITION ON A RANDOMLY DI-
LUTED LATTICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. ABSORBING STATE PHASE TRANSITIONS ON PERCOLATING LAT-
TICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. INTRODUCTION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2. SIMPLE AND GENERALIZED CONTACT PROCESSES ON DI-
LUTED LATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1. Contact process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2. Generalized contact process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3. Lattice dilution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3. CLASSICAL PERCOLATION THEORY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4. NONEQUILIBRIUM TRANSITION ACROSS THE LATTICE PER-
COLATION THRESHOLD.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1. Single-cluster dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.2. Steady-state density and density decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3. Spreading from a single seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.4. External source field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.5. Scaling theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5. GENERALITY OF THE ACTIVATED SCALING SCENARIO . . . . . . . 57

3.6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4. PHASE TRANSITIONS OF THE GENERALIZED CONTACT PRO-
CESS WITH TWO ABSORBING STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1. INTRODUCTION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2. THE GENERALIZED CONTACT PROCESS WITH SEVERAL AB-
SORBING STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3. MEAN-FIELD THEORY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4. MONTE CARLO SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1. Method and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.2. Establishing the phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3. Generic transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.4. Transition at σ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.5. Scaling at the contact process critical point (µcpc , 0) . . . . . . . . . . . . . . 82

4.4.6. The endpoint (µ∗, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5. GENERALIZED CONTACT PROCESS WITH TWO SYMMETRIC AB-
SORBING STATES IN TWO DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



ix

5.1. INTRODUCTION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2. GENERALIZED CONTACT PROCESS WITH SEVERAL ABSORB-
ING STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3. MONTE-CARLO SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1. Method and phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2. Generic transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3. Transition at σ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.4. Scaling of ρst at the contact process critical point (µcpc , 0) . . . . . . . 103

5.4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



x

LIST OF ILLUSTRATIONS

Figure Page

1.1 Phase transition in a ferromagnet. Left: Behavior of the order parameter.
Right: Phase diagram of the ferromagnet as function of temperature and
external magnetic field. When the external field H = 0, a continuous
(second-order) phase transition occurs at T = Tc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Landau free energy for a sequence of temperatures with a = a0(T − Tc)
and b = 0. The two inner dashed parabolas correspond to T > Tc and
the outer dashed parabolas represent the condition T < Tc. . . . . . . . . . . . . . . . 4

1.3 Example of site percolation on the square lattice. Left: At p < pc,
occupied sites form small finite-size clusters. Right: At p ≥ pc, an infinite
cluster spanning the entire lattice emerges. Blue dashed oval shows the
infinite cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 The behavior of the order parameter (P∞) at the percolation transition.
Here pc is a percolation threshold (critical point). . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Schematic update for the contact process in d = 1. Infected-sites (occu-
pied) infect their neighbors at rate λ/2 (n = 1, d = 1) and recover at
rate 1. This figure is reprinted from Ref. [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Difference between isotropic and directed percolation. Left : Bond per-
colation from a single seed (red dot) toward all directions. Right : Per-
colation (represented by arrows) is only allowed in downward direction,
and dashed bonds represent forbidden directions in percolation process. . . 22

1.7 Schematic update of the generalized contact process. The occupied site is
represented by the solid dot and different colored empty sites are labeled
by k and l (k 6= l).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Schematic phase diagram of a site diluted contact process as function of
impurity concentration p and birth rate λ. There is a multicritical point
at p = pc and λ = λ∗. The phase transition (b) across the percolation
threshold of the lattice is the topic of this Letter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 (Color online:) Schematic phase diagrams for the simple and generalized
contact processes on a diluted lattice in dimensions d ≥ 2 as a function of
dilution p and inverse infection rate λ−1 (healing and boundary activation
rates µ and σ are fixed). Case (a) applies to systems that display a
phase transition at λ0

c in the absence of dilution. There is a multicritical
point (MCP) at (pc, λ∗) separating the generic transition from the lattice
percolation transition. Case (b) is for systems that are always active in
the absence of dilution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



xi

3.2 (Color online:) Schematic of the metastable state of the supercritical
contact process on a single percolation cluster. A and I denote active and
inactive sites, and ξcs is the connected correlation length of the density
fluctuations on the cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 (Color online:) Contact process on one-dimensional clusters of size s,
starting from a fully active lattice at λ = 3.8, µ = 1 which is in the
active phase. (a) Double-logarithmic plot of density vs. time showing
the two-stage time-evolution via a metastable state. (b) Log-linear plot
demonstrating that the long-time decay is exponential. All data are
averages over 105 independent runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 (Color online:) Lifetime ts as a function of cluster size s for different
values of the infection rate λ. The other parameters are as in Fig. 3.3. The
dashed lines are fits of the large-s behavior to the exponential dependence
(117). Inset: Correlation volume A−1 as a function of the distance from
bulk criticality. The dashed line is a power-law fit. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 (Color online:) Schematic of the metastable state of the supercritical gen-
eralized contact process with two inactive states on a single percolation
cluster. A denotes the active state, and I1 and I2 are the inactive states.
ξcs is the connected correlation length of the density fluctuations on the
cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 (Color online:) Bulk phase transition of the generalized contact process
with two absorbing states in d = 1 measured via spreading from a single
seed: Number N of active sites vs. time t for different healing rates µ.
The infection and boundary activation rates are fixed, λ = σ = 1, and
the data are averages over 106 runs. The critical point appears to be
close to µ = 0.628 in agreement with [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 (Color online:) Lifetime ts as a function of cluster size s for the gener-
alized contact process with two inactive states at different values of the
healing rate µ. The infection and boundary activation rates are fixed,
λ = σ = 1, and the data are averages over 106 runs. (a) d = 1 where
the bulk system has a transition, see Fig. 3.6. (b) d = 2, where we do
not find a bulk transition because the system is always active [32]. The
dashed lines are fits of the large-s behaviors to the exponential law (117). 61

4.1 (Color online) Phase diagram of the 1D generalized contact process as
function of the healing rate µ and the boundary rate σ. A line of DP2
(PC) transitions (blue dashed line) separates the active and inactive
phases. For σ → 0, this line does not terminate in the simple con-
tact process critical point at µcpc ≈ 0.30325 and but at µ∗ ≈ 0.552. For
µcpc < µ < µ∗, the system is inactive at σ = 0 (thick solid red line), but an
infinitesimal σ takes it to the active phase. Inset: Close to the endpoint
at µ∗, the phase boundary behaves roughly as σc ∼ (µ− µ∗)2. . . . . . . . . . . . . . 74



xii

4.2 (Color online) Spreading simulations at σ = 0: Number Ns of active sites
as a function of time t. The solid line for µ = 0.30325 represents a fit to
Ns ∼ tΘcp yielding Θcp = 0.315(5). The data are averages over 25000 runs. 75

4.3 (Color online) Spreading simulations: Number Ns of active sites as a
function of time t for several σ at fixed µ = 0.428 (panel a) and µ = 0.6
(panel b). The data are averages over 103 (at the smallest σ) to 105 runs. 76

4.4 (Color online) Spreading simulations at σ = 0.1 for several µ close to the
phase boundary. Main panel: Survival probability Ps as a function of
time t. The data are averages over 105 runs. Inset: Number Ns of active
sites as a function of time t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 (Color online) Critical spreading simulations: Survival probability Ps and
number of active sites Ns as functions of t for several points (µ, σ) located
on the generic phase boundary. The inset shows the prefactor Bσ of the
critical power law Ps = Bσt

−δ as a function of σ. The solid line is a fit
to Bσ ∼ σ−ζ which gives ζ = 0.284. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 (Color online) Critical density decay simulations: Density ρA of active
sites as function of t for several points (µ, σ) on the generic phase bound-
ary. The solid lines are fits to a power law ρA = B̄σt

−α giving α =
0.285(5). The data represent averages of 400 runs with system size L = 104. 79

4.7 (Color online) Density decay simulations. Main panel: stationary density
ρst as a function of the boundary rate σ for various healing rates µ. For
µcpc < µ < µ∗, the solid lines are fits of the low-σ behavior to ρst = Bµσ.
At the simple contact process critical point, µ = µcpc = 0.30324, and at
the endpoint, µ = µ∗ = 0.552, we fit to power-laws ρst ∼ σω which gives
exponents of ωcp = 0.108(2) and ω∗ = 1.4(1). The data are averages over
50 to 200 runs with system sizes L = 2000 to 5000. Inset a: prefactor
Bµ of the linear σ dependence as a function of µ− µcpc . A fit to a power
law gives Bµ ∼ (µ − µcpc )−κ with κ = 2.32(10). Inset b: prefactor Bµ as
a function of µ∗ − µ. A fit to a power law gives Bµ ∼ (µ∗ − µ)κ

∗
with

κ∗ = 0.91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 (Color online) Spreading simulations: Survival probability Ps as a func-
tion of time t at µ = 0.4 for various values of the boundary rate σ. The
data are averages over 100000 runs. Inset: Low-σ limit of the stationary
Ps as a function of µ. The dashed line is a fit to Ps ∼ (µ∗ − µ)β with
µ∗ = 0.552 and β = 0.87(5) in agreement with the PC universality class
(see, e.g., Refs. [4, 5]).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



xiii

4.9 (Color online) Projection of the phase diagram of the generalized contact
process on the µ̄ − µ plane. The individual symbols show the locations
of the phase boundaries as determined from our simulations: solid blue
circles – transition for σ ≡ 0 (simple contact process), solid red triangles
– generic transition for σ = 1, open squares – approximate location of the
endpoint of the generic transition (σ → 0) estimated from the transition
at σ = 0.01. The lines are guides to the eye only. Points A and B are
the simple contact process critical point and the endpoint investigated in
the main part of the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 (Color online) Phase diagram of the two-dimensional generalized contact
process with two inactive states as function of the healing rate µ and the
domain-boundary activation rate σ. For µ < µcpc = 0.6066, the system is
in the active phase for any σ. For µcpc < µ < µ∗ = 1.0000, the system is
inactive at σ = 0 (thick solid red line), but an infinitesimal σ takes it to
the active phase. For µ > µ∗, the system is inactive for any σ. . . . . . . . . . . . . . 96

5.2 (Color online) Spreading simulations at σ = 0.1 for several µ close to the
phase boundary. Main panel: Number Ns of active sites as a function of
time t. Inset: Survival probability Ps as a function of time t. The data
close to criticality are averages over 106 runs on a 4000 × 4000 system,
smaller numbers of runs were used away from criticality. . . . . . . . . . . . . . . . . . . . 97

5.3 (Color online) Survival probability Ps and number of active sites Ns as
functions of t for several points located on the generic phase boundary
µ = 1.0000 (2 × 106 to 107 runs used). Inset: prefactor Bσ vs. σ. The
straight line is a fit to a power-law Bσ ∼ σ−ζ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 (Color online) Survival probability Ps(t) for several points located on the
generic phase boundary plotted as Ps t vs. ln(t). Straight lines correspond
to mean-field behavior with logarithmic corrections. Inset: Same data
plotted as ln(Ps) t) vs. ln(t). Straight lines represent pure power laws. . . . . 99

5.5 (Color online) Density of active sites plotted as ρ−1(t) vs. ln(t) for several
points located on the generic phase boundary. The data are averages over
100 runs with system size 500 × 500. The curve for σ = 0.01 is shown in
the inset because its density values are much smaller than those of the
other curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xiv

5.6 (Color online) Density decay simulations. Main panel: stationary density
ρst as a function of the boundary rate σ for various healing rates µ. For
µcpc < µ < µ∗, the solid lines are fits of the low-σ behavior to ρst = Bµσ.
At the simple contact process critical point, µ = µcpc = 0.6066, we fit to
the power-law ρst ∼ σωcp which gives an exponent of ωcp = 0.274(5). The
data are averages over 300 to 600 runs with system sizes 100×100. Inset
a: prefactor Bµ of the linear σ dependence as a function of µ−µcpc . A fit to
a power law gives Bµ ∼ (µ− µcpc )−κ with κ = 1.56(5). Inset b: prefactor
Bµ as a function of µ∗ − µ. A fit to a power law gives Bµ ∼ (µ∗ − µ)κ

∗

with κ∗ ≈ 0.23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 (Color online) Spreading simulations: Survival probability Ps and number
of active sites Ns as functions of time t for a fixed healing rate of µ = 0.8
and several σ. The data are averages over 2000 to 10000 runs on a
4000× 4000 system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



xv

LIST OF TABLES

Table Page

1.1 The critical exponents of the Ising model. MF: Mean-field solution; On-
sager solution (1944): Exact solution of two-dimensional Ising model
without a field; Ising (d = 3): Results of computational experiments. . . . . . 7

1.2 Critical exponents of the directed percolation universality class: In d = 1,
exponents ν⊥ and ν‖ are obtained from a series expansion by Jensen
(1999). Exponents of other dimensions come from computational calcu-
lations which were performed by Voigt and Ziff for d = 2 (1997) and
Jensen for d = 3 (1992) [42] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Critical exponents of DP2 universality class. For d = 1 all values coincide
with the PC class and for d = 2 all exponents take mean-field values with
logarithmic corrections according to the GV class [32]. . . . . . . . . . . . . . . . . . . . . . 25

2.1 Critical exponents of the nonequilibrium phase transition at p = pc in
two and three space dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Critical exponents of the nonequilibrium phase transition across the per-
colation threshold in two and three space dimensions. . . . . . . . . . . . . . . . . . . . . . . 62



1. INTRODUCTION

1.1. EQUILIBRIUM PHASE TRANSITIONS

Phase transitions are fundamental processes that have been detected in nature.

What is a phase transition? A phase transition can be defined as the singularity of

the free energy and other thermodynamic variables that occurs if a system transforms

from one state to a qualitatively different one. One of the examples is the phase tran-

sition of water from liquid to vapor. If water is heated at atmospheric pressure, the

temperature increases until the evaporation temperature (T = 373.15K) is reached.

At this point, further heating does not increase the temperature, but only turns the

liquid water into vapor. This heat is called latent heat which overcomes the attractive

forces between the water molecules in the liquid state. When all of the liquid has

evaporated, then the temperature rises again. This phenomenon formally corresponds

to an infinite heat capacity

Cp = T
∂S

∂T
|p, (1)

at the evaporation temperature [1]. If the entropy S is discontinuous at the transition

temperature, the transition is called a first-order phase transition. In contrast a phase

transition at which the entropy is continuous, is called a second-order phase transition

or critical point. In other words, 1st order phase transitions involve latent heat, while

continuous transitions do not.

The phase transition of liquid to vapor at atmospheric pressure is of 1st order,

characterized by a large jump in density. If one follows the phase boundary to higher

T , this density difference goes to zero at a critical point, at Tc = 647K for water.

This behavior of the density difference means that a second order phase transition

occurs at the critical point.

Systematic investigations of phase transitions started, perhaps, in 1869 when T.

Andrews discussed the liquid-gas critical point in CO2 [2, 3]. In 1894, van der Waals

suggested the equation of state (P + a/V 2)(V −NAb) = RT for a fluid of volume V ,

pressure P , and temperature T . It provided one of the first theoretical explanations of

phase transition phenomena. In 1895, P. Curie noticed the similarity of the magnetic

critical point in iron to the liquid-gas critical point. After that, magnetism became

one of major topics in phase transition phenomena research. After the Ising model

(1925) was introduced, L.D. Landau (1937) suggested his general theory for phase
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transitions [4, 5]. We now know that Landau theory is not exact because it does not

contain fluctuation effects. Nonetheless, Landau theory remains a valuable starting

point for the investigation of critical phenomena. The modern area of phase transition

research started in 1944, when L. Onsager [6] solved the two dimensional Ising model

exactly and found behavior different from Landau theory.

1.1.1. Phase transitions in magnetism. From the early 20th century to

the present, many physicists have tried to understand and solve the phase transition

phenomena in magnetic materials. The most basic theoretical model, called the Ising

model, was introduced by Lenz and Ising [7, 8] who were studying the phase transition

of ferromagnets at the Curie temperature. This model consists of a lattice in which

each site is occupied by a binary “spin” variable si = ±1. Each spin interacts with

its neighbors. If no external field exists, the Hamiltonian is given by

H(s1, s2, . . . , sN) = −J
∑
<ij>

sisj, (2)

where J is an interaction energy. For J > 0 spins prefer to be parallel, leading to

ferromagnetic behavior while J < 0 leads to antiparallel spin configurations (anti-

ferromagnet). For J > 0 and sufficiently low temperature T < Tc, where Tc is the

critical temperature, all spins align parallel to a common axis and this phase is called

a ferromagnetic phase. If T > Tc, the parallel alignment is destroyed by thermal mo-

tion. This phase is called a paramagnetic phase. The two phases can be distinguished

via the magnetization m =< si >, which is the order parameter of the transition;

m = 0 corresponds to the paramagnetic phase, and m 6= 0 corresponds to the fer-

romagnetic phase. This is illustrated in the left panel of Fig. 1.1. The ferromagnet

has two equivalent states (m > 0 and m < 0) at low temperature. As the external

field H → 0+, the magnetization m approaches a non-zero positive value. However,

when H changes sign at H = 0, m has same magnitude but different sign. Crossing

the H = 0 line at T < Tc is thus a first-order phase transition. From T ≥ Tc, m is

continuous at H = 0. Thus, as in the liquid-gas case the critical point at T = Tc is

the end point of the line of first-order phase transitions, as is illustrated in the right

panel of Fig. 1.1.

1.1.2. Landau theory. Early theoretical approaches to phase transitions

were of the mean-field theory (MFT) type. The MFT is an approximative method

and is broadly used in many-body problems. This theoretical method is based on

the assumption that neighboring spins affect a selected spin only via their average

field. Thus, the problem is reduced to a one-body problem with an effective field.



3

Figure 1.1. Phase transition in a ferromagnet. Left: Behavior of the order parameter.
Right: Phase diagram of the ferromagnet as function of temperature and
external magnetic field. When the external field H = 0, a continuous
(second-order) phase transition occurs at T = Tc.

Landau introduced a generalization of earlier MFT, now called the Landau theory.

The significant assumption of Landau theory is that in the vicinity of the critical

point, one may expand the free energy in a power series in the order parameter

[9]. Thus the free energy F is a function1 of the magnetization m, and the external

magnetic field h,

F w −hm+ am2 + bm3 + cm4 · · · , (3)

where a, b, and c are system parameters. The stable physical state is given by the

minimum of F . In this section we shall only consider the symmetric case, therefore

we can set b = 0 (In the case of b 6= 0, a first-order transition would occur).

If no external field exists (h = 0), the critical point of Landau theory is easily

explained. When T > Tc, m = 0 gives a minimum of F . When T < Tc, two minima

of F appear (see Fig. 1.2) and are corresponding to

m = ±
√
−a
2c
. (4)

In the Fig. 1.2, the two inner dashed parabolas are corresponding to T > Tc and

the outer dashed parabolas represent the condition T < Tc. Thus a > 0 corresponds

to the paramagnetic phase, a < 0 corresponds to the ferromagnetic phase. Close to

1It is known as the Landau function equal to the Gibbs free energy.
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Tc we can thus write a = a0(T − Tc) with a positive constant a0. The singularity in

Eq. (4) is an example of the critical singularities generally occurring in the vicinity

of a critical point, i.e.,

m(T ) ∼ |T − Tc|β , (5)

χ(T ) ∼ |T − Tc|−γ , (6)

C(T ) ∼ |T − Tc|−α , (7)

and

mc(Tc, h) ∼ h1/δ, (8)

where χ(T ) is the magnetic susceptibility, C(T ) is the specific heat, and mc is the

magnetization at T = Tc. As follows from Eq. (4), the critical exponent for the

magnetization m in Landau theory is β = 0.5. The other exponents take the values

α = 0, γ = 1, and δ = 3 in Landau theory [9, 10]. For example, by using the

minimization property (∂F/∂m) = 0, we obtain a nonlinear equation for m. The

magnetic susceptibility is then given by χ(T ) = (∂h/∂m)−1
T . If T > Tc under the

condition of m −→ 0, χ(T ) = 1/2a(T ). If T < Tc , χ(T ) = −1/4a(T ). These two

power-laws give a critical exponent γ = 1.

Figure 1.2. Landau free energy for a sequence of temperatures with a = a0(T − Tc)
and b = 0. The two inner dashed parabolas correspond to T > Tc and
the outer dashed parabolas represent the condition T < Tc.
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The Landau free energy depends only on the average value of the order param-

eter, it does not contain any space dependence. Landau theory can be generalized by

making m a function of position and adding a gradient term to the free energy. The

minimum condition ∂F/∂m(~r) = 0 then reads

−D∇2m−h+ 2bm+ 4cm3 · · · = 0. (9)

By expanding m and h about their averages, m0 + δm(−→r ) and h0 + δh(−→r ), where

m0 and h0 are constants, one can find the δm-δm correlation function G(−→r ) ∼
exp(−r/ξ). The correlation length ξ(T ) diverges as

ξ(T ) ∼| T − Tc |−ν , (10)

at the critical point where the correlation length critical exponent is ν = 1/2.

1.1.3. Fluctuations and Ginzburg criterion. A crucial question for

the validity of Landau theory is the strength of the order parameter fluctuations.

In the original Landau theory, Eq. (3), they have been neglected, and even in the

generalized form leading to Eq. (9), they have been assumed to be small. In this

subsection we discuss under what conditions this assumption is fullfilled. The long-

range fluctuations are described by correlation functions

G( ~x1 − ~x2) = 〈m ( ~x1)m ( ~x2)〉 − 〈m ( ~x1)〉 〈m ( ~x2)〉 , (11)

where ~x1− ~x2 = ~r is the distance and m(~x) is the order parameter. In a ferromagnet

fluctuations can be considered small, if∫
dd~r G(~r)∫
dd~rm2

� 1, (12)

where the integrals are taken over a correlation volume. Statistically the numerator

represents the variance of the order parameter fluctuation and it is compared with

the mean-square value of the order parameter. Close to the critical point, G(~r) takes

the general form [3]

G(~r) ' 1

~rd−2+η
exp(−~r

ξ
), (13)
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where ξ represents the correlation length. The critical exponent is η = 0 in Landau

theory. Evaluating Eq. (12) leads to

|T − Tc|dν−2β−2ν � const (14)

for T → Tc, and the exponent must satisfy the condition

dν − 2β − 2ν > 0. (15)

Inserting the mean field values ν = 1/2, β = 1/2 gives d > 4. The effects of fluctu-

ations must therefore be considered for d < d+
c = 4 to describe the critical behavior

correctly. In contrast, for d > d+
c , we can expect Landau theory to give the correct

critical behavior. d+
c is called the upper critical dimension, and the condition (15) is

the Ginzburg criterion [11].

1.1.4. Landau-Ginzburg-Wilson theory. In order to adequately describe

the order parameter fluctuations, one needs to generalize the Landau free energy

function (3) to a functional that depends on a spatially varying order parameter field

φ(x). Expanding in both φ and its gradient yields the so-called Landau-Ginzburg-

Wilson (LGW) theory [12, 13, 14]

S [φ (~x)] =

∫
ddx

[
tφ2 (~x) + c (∇φ (~x))2]+ u

∫
ddxφ4 (~x) . (16)

In contrast to the original Landau theory, the LGW theory is a nontrivial many-

body problem which cannot be solved in closed form. Understanding critical phenom-

ena based on the LGW theory was made possible by the development of the renor-

malization group by K.G. Wilson [12, 13] who was awarded the 1982 Nobel Prize in

physics.

Wilson’s renormalization group (RG) is based on the earlier idea of Kadanoff

scaling [3, 9, 15]. The crucial idea is that at a critical point the correlation length

diverges and therefore the system effectively looks scale invariant. We shall explore

these scaling ideas in Subsec 1.2.

1.1.5. Universality class. Critical phenomena are characterized by sets

of critical exponents and systems can be classified according to the values of these

exponents. Interestingly, the critical exponents of several physical systems are ex-

actly identical. Thus, we can aggregate these models and label them as being in
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same universality class [9, 10]. Usually, critical exponents depend on the spatial di-

mensionality2 d, and on the symmetry of the order parameter. For example, the 3d

Ising model and the 2d Ising model do not have the same critical exponents. The

Heisenberg model also should not be described by critical exponents of the 3d Ising

model: although the two models have the same dimensionality, they have different

order parameter symmetries (O(3) vs Z(2)). The universality class is independent of

microscopic details such as the geometric structure of the lattice (triangular, square,

and hexagonal lattice) [9, 10]. Critical exponents for low dimensional Ising models

are shown in the Table 1.1.

MF Onsager solution (d = 2) Ising (d = 3)

α 0 0 0.110(5)
β 1/2 1/8 0.325±0.0015
γ 1 7/4 1.2405±0.0015
δ 3 15 4.82(4)
ν 1/2 1 0.630(2)
η 0 1/4 0.032±0.003

Table 1.1. The critical exponents of the Ising model. MF: Mean-field solution; On-
sager solution (1944): Exact solution of two-dimensional Ising model with-
out a field; Ising (d = 3): Results of computational experiments.

1.2. SCALING THEORY

In this section, we shall introduce the scaling theory [3, 9, 10] for equilibrium

phase transitions. The scaling theory is based on the assumption that the only rele-

vant length close to a critical point is the correlation length [16]. As shown previously,

physical quantities are characterized by power-laws in the vicinity of the critical point

and these power-laws mathematically have the implicit property of scale invariance.

In order to define the concept of scaling, we introduce the Widom scaling [17] as-

sumption and the Kadanoff block-spins [15] which illustrate a schematic example for

scaling properties near the critical point.

1.2.1. Scaling properties near the critical point. Consider a system

of interacting spins on a lattice of lattice constant r0, distance from criticality t

2Dimensionality does not affect the universality class if d ≥ d+
c , d+

c is the upper critical dimension.
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and field h. If the system is close to a ferromagnetic phase transition, neighboring

spins are mostly parallel. This implies that we can approximately replace a group

of neighboring sites (or bonds) by a single site. Repeating this everywhere in the

lattice leads to a new lattice of “block-spins” with a lattice constant lr0 and modified

distance from criticality tl and field hl. If we now rescale all lengths by a factor l,

the free energy density changes by a factor l−d. Further assuming that tl = lxt and

hl = lyh, we obtain the scaling form

f(t, h) = l−df(lxt, lyh) (17)

for the free energy and the correlation length

ξ(t, h) = lξ(lxt, lyh). (18)

This implies that f and ξ are not functions of the two variables t, h independently.

Instead, they can be combined to one relevant variable. For example, if we simply

set l to l = t−1/x, functional forms of the free energy and the correlation length are

f(t, h) ∼ td/xf(ht−y/x) , ξ(t, h) ∼ t−1/xξ(ht−y/x). (19)

This is the scaling hypothesis.3 [9, 10, 17, 16]. These relations were first found by

Wilson [12, 13] on a phenomenological basis.

By taking the appropriate derivative of f , the scaling behavior of thermody-

namic functions can be found. When h = 0, the two functions in Eq. (19) give the

power-laws f(t) ∼ td/x and ξ(t) ∼ t−1/x respectively. For the ferromagnetic phase

transition, the spontaneous magnetization m(t) is

m(t) ∼ t(d−y)/x, (20)

because m = ∂f/∂h. Comparing with m(t) ∼ tβ gives a relationship which is called

the scaling relation [9, 10, 16]

β =
d− y
x

= (d− y)ν (21)

3Widom proposed that close to the critical point the singular part of the free energy density
f = F/V is a function of one rather than two arguments, see Refs. [16, 17].
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with ν = 1/x. The magnetization at the critical point (t = 0) with l = h−1/y,

m ∼ h(d−y)/y, (22)

gives another scaling relation which is called the Widom scaling relation [17],

δ =
y

d− y
. (23)

From the susceptibility and the specific heat, χ = (∂m/∂h)T , C = −T (∂2f/∂t2)h,

two more scaling relations can be derived

γ =
2y − d
x

= (2y − d)ν, (24)

α =
2x− d
x

= 2− dν. (25)

By using these scaling relations for the critical exponents, we can derive the

Rushbrook scaling law [16] and the Widom scaling law [17, 18],

α + 2β + γ = 2 (26)

α + β(δ + 1) = 2. (27)

1.3. PERCOLATION THEORY

Percolation concerns the movement of particles on randomly connected network

systems [19, 20, 21]. Representative examples can be found in forest fires, oil fields,

diffusion in disordered media, and random magnetism. For example, water moving

through porous rocks is a well-known example of percolation phenomena in nature.

In this case, the paths for water can be considered a random network. If one considers

percolation on a lattice consisting of “sites” connected by “bonds”, one can distinguish

two different kinds of percolation problems. If the sites are randomly occupied or

empty, we speak of a site percolation problem. In contrast, a bond percolation problem

arises if the bonds can be present or absent with some probability. Percolation is a

purely geometric problem in which clusters of connected sites or bonds are clearly

defined static objects. Percolation theory treats and predicts the geometric properties

of these clusters on the network mathematically.

Historically, Flory (1941) [19] and Stockmayer (1943) [22] developed the frame-

work of percolation theory on the Bethe lattice (or Cayley tree model) to describe

polymerization processes in which small molecules branch to macromolecules. In

1957, Broadbent and Hammersley [23] introduced the percolation problem into the
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mathematics literature. The relations between percolation and critical phenomena

have been studied in great detail since the 1970’s [24, 25].

1.3.1. Site percolation on a lattice. Consider an infinite lattice system,

with each site randomly occupied independent of its neighbors with probability p.

When p = 0, all sites are in empty state, but empty sites are getting occupied at

p > 0. All sites are occupied at p = 1. In the region 0 < p < 1, the occupied sites

form connected clusters, whose typical size increases with p. For small p, below some

critical value pc, called the percolation threshold, all clusters are of finite size, even

in an infinite lattice. When p reaches pc, an infinite cluster of connected sites starts

to form which spans the entire sample. The phase transition occurring across pc is

called the percolation transition. Its order parameter is the probability P∞(p) of a

site to belong to the infinite cluster. The percolation transition is illustrated in Figs.

1.3 and 1.4. In the left panel of Fig. 1.3, the infinite cluster has not appeared yet,

this corresponds to P∞ = 0. At p ≥ pc the infinite cluster appears (see right panel of

Fig. 1.3) and P∞ 6= 0. Close to pc, the order parameter follows a power-law with the

critical exponent β,

P∞ ∼ (p− pc)β p→ p+
c , (28)

analogous to the critical phenomena discussed in Subsecs 1.1 and 1.2. The critical

exponent β is only dependent on the dimensionality and, as mentioned before, this is

known as universality4.

1.3.2. Distribution of finite-size clusters. An interesting question in

percolation theory is the distribution of the sizes of the clusters, and how it changes

with p. Since the probability of a site to be occupied is p, one can imagine that the

s-cluster has s occupied sites with probability ps and the occupied edge sites have

empty neighboring sites with the probability 1 − p each. However, the number of

these perimeter sites depends on the shape of the cluster. Therefore the number of

clusters with s sites per lattice ns(p) is

ns(p) =
∑
t

g(s, t)ps(1− p)t, (29)

where g(s, t) is a configuration factor5 and t is a number of perimeter sites. The

summation
∑

t g(s, t) is proportional to s−θAs on the condition of s being very large

4In this section we only treat a site percolation problem, but in agreement with universality, a
bond percolation shows same critical behavior.

5The number of lattice animals (or configurations of finite clusters) with size s and perimeter t.
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Figure 1.3. Example of site percolation on the square lattice. Left: At p < pc, oc-
cupied sites form small finite-size clusters. Right: At p ≥ pc, an infinite
cluster spanning the entire lattice emerges. Blue dashed oval shows the
infinite cluster.

Figure 1.4. The behavior of the order parameter (P∞) at the percolation transition.
Here pc is a percolation threshold (critical point).

[21, 25, 26],

g(s) =
∑
t

g(s, t) ∼ s−θAs, (30)
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where A is a constant and θ is an exponent6 which is associated with the statistics of

lattice animals [27, 28].

When p → 0 under the condition of s → ∞, this condition gives (1− p)t ' 1

and therefore ns(p) is given by,

ns(p < pc) ∼ s−θpsAs

= s−θ exp

(
−s ln

(
1

pA

))
∼ exp (−c1s) . (31)

When p > pc, if p is close to 1, this condition gives ps ' 1. Here, we can neglect

the term for g(s) because s is close to the system size. Thus ns(p) is given by

ns(p > pc) ∼ const · (1− p)t

∼ B(s) exp

(
−t ln

1

1− p

)
∼ exp (−c2 · t) . (32)

In d-dimensional hyper-cubic lattice, s is proportional to rd, s ∼ rd, and t is propor-

tional to rd−1, t ∼ rd−1. Therefore by using

t ∼ rd−1 = s1−1/d, (33)

we obtain the cluster size distribution

ns(p > pc) ∼ exp
(
−c2 · s1−1/d

)
. (34)

The results of Eqs.(31) and (34) can be combined. Using the analogy between

percolation and critical phenomena, we can postulate a scaling form for ns(p) close to

the percolation threshold (this also follows from Fisher’s Ising droplet model7 [29]),

ns(p) = s−τf [sσ(p− pc)] (35)

with

f(x) ∼ exp[−const · x1/σ] (x > 0) (36)

6For examples: θ = 1 (d = 2), 3/2 (d = 3), and 5/2 (d > 8) in the Bethe lattice.
7This model was first suggested by Essam and Fisher (1963) and extended by Fisher (1967). In

this droplet model, z ∼ Asσ represents droplet’s surface area where s is the number of molecules in
the droplet and A is a constant of order unity to differentiate shapes of the droplet.
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and

f(x) ∼ exp[−(const · x1/σ)1−1/d] (x < 0). (37)

Here, σ and τ are critical exponents.

1.3.3. Criticality and scaling of percolating clusters. In this subsection,

we relate the scaling of the cluster number to other critical properties of the perco-

lation problem. Each lattice site is either empty or occupied, and if it is occupied, it

belongs either to a finite cluster or to the infinite cluster. The fraction P∞(p) of sites

belonging to the infinite cluster is thus given by,

P∞(p) = p−
∑
s

nss. (38)

Here, the sum over s gives the probability that an arbitrary chosen site belongs to

any finite cluster. Thus, near the critical point pc, the relative strength is P∞,rel(p) =

P∞(p)− P∞,c(p), but P∞,c(p) = 0 because
∑

s ns(pc)s = pc. By using these relations

we can show that the asymptotic behavior of P∞,rel(p) is represented by the following

P∞,rel(p) = P∞(p)− P∞,c(p)

=
∑
s

[ns(pc)− ns(p)] s+O(p− pc)

∼ |p− pc|
τ−2
σ

∫ ∞
0

dz z−1−( τ−2
σ

)[f(z)− f(0)], (39)

where z = |p− pc| sσ (or z = |p− pc|1/σ s) and the integration over z gives the

gamma function. In this integration, only z > 0 could be considered, because the

infinite cluster dose not exist in p < pc. The integration converges to a finite value

and the leading behavior of P∞(p) is

P∞(p) ∼ (p− pc)
(τ−2)
σ . (40)

Therefore, from Eqs. (28) and (40), we obtain the relation for the critical exponent

β,

β =
τ − 2

σ
. (41)
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The average cluster size S is obtained by

S =
∑
s

nss
2∑
nss

∼
∫
ds s2−τ exp(−cs)

∼ |p− pc|
(τ−3)
σ

∫
dz z−1+

(3−τ)
σ f(z). (42)

Comparing with the definition S ∼ |p− pc|−γ which follows from the analogy between

S and the susceptibility Eq.(6), we have

γ =
3− τ
σ

. (43)

The total number of clusters per site M(p) is defined by

M(p) =
∑
s

ns(p) (44)

and it is analogous to the free energy per site F (T ) ∼ |T − Tc|2−α. Therefore the

critical exponent α is obtained by the following steps,

M =
∑
s

ns ∼
∫
ds s−τ exp(−cs)

∼ |p− pc|
(τ−1)
σ

∫
dz z−1+

(1−τ)
σ f(z), (45)

α = 2− τ − 1

σ
. (46)

By combining the three scaling laws above, Eqs. (41), (43), and (46), we can confirm

the Rushbrooke scaling law

α + 2β + γ = 2. (47)

Now we need to investigate the correlation length ξp for the percolating cluster,

in order to have a full set of critical exponents which describe the critical behavior.

As we mentioned before, the correlation length is given by the average distance of

two sites belonging to the same cluster. The correlation length follows a power-law
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with the critical exponent ν,

ξp ∼ |p− pc|−ν . (48)

1.3.4. Fractal dimension of the percolating cluster. Close to the per-

colation threshold, the geometric structure of the spanning cluster is inhomogeneous.

Right at pc its structure is actually that of a fractal, a system of non-integer dimension

df (called the fractal dimension). If N(L) denotes the number of occupied sites in a

spanning cluster, N(L) is proportional to Ld for the homogeneous distribution. For

the fractal case, however, N(L) is proportional to Ldf and df can take non-integer

values.

Therefore, if one takes a sphere with radius R in the infinite cluster and then

counts the number of occupied sites in that sphere, the count is proportional to Rdf .

Since the probability of an arbitrary occupied site to belong the infinite cluster is P∞

, this gives the relation

P∞ ∼
Rdf

Rd
∼ ξ

df
p

ξdp
(49)

(at p 6= pc, the structure is fractal for length up to the correlation length ξp). By Eqs.

(28) and (48), one obtains the scaling relation

df = d− β

ν
(50)

which is only valid for d < 6 [21].

Now to consider the correlation length, we note that ξ2 is the average distance

of two sites belonging to the same cluster or, equivalently, the squared radius of a

given cluster. If a site belongs with probability nss to an s-cluster with radius Rs, ξ
2

is given by the average of R2
s over all clusters

ξ2 =
2
∑

sR
2
ss

2ns∑
s2ns

∼ |p− pc|−2ν . (51)

In the fractal region, Rs ∼ s1/df . Therefore Eq. (51) gives (See Ref. [21])

1

df
= σν (52)
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and, we obtain the scaling law which relates ν to the other exponents

dν = γ + 2β = 2− α =
τ − 1

σ
. (53)

1.4. NONEQUILIBRIUM PHASE TRANSITIONS

The preceding sections dealt with phase transitions in equilibrium systems.

However, research has shown that abrupt transitions can also occur between different

nonequilibirum steady states. These nonequilibrium phase transitions display large-

scale fluctuations and collective behavior over large distances just like equilibrium

phase transitions [30, 31, 32]. This section gives an introduction into the nonequilib-

rium phase transitions in stochastic nonequilibrium lattice models [33, 31, 32].

What is a nonequilibrium system? Recall that a thermodynamic equilibrium

state is characterized by being time-independent and by the absence of macroscopic

currents [34, 35]. Thus, one can broadly distinguish two classes of nonequilibrium

systems. In one class are systems whose steady states are proper equilibrium states,

but they are prepared in states far from equilibrium. The other class, nonequilib-

rium steady states, involve macroscopic currents. In the microscopic view, this can

be understood by looking at the transition probabilities between microscopic states.

Consider the master equation

dPA(t)

dt
=
∑
B

WB→APB(t)−
∑
B

WA→BPA(t), (54)

where PA(t) and PB(t) are the probabilities for each state and W is the transition

rate between the two states. In equilibrium, they fulfill the so-called detailed balance

condition [35], and the P (t) are given by the Boltzmann distribution.

WB→APB(t) = WA→BPA(t) (55)

In contrast nonequilibrium steady states do not require detailed balance [31, 36]. As

a result, the key point of difference between equilibrium and nonequilibrium is that

the stationary probability distribution and the transition rates are known for the

equilibrium, but for the nonequilibrium one must find the time-dependent solutions

of the master equations.

In this section we treat nonequilibrium steady states, i.e., nonequilibrium sys-

tems of the 2nd kind.
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Figure 1.5. Schematic update for the contact process in d = 1. Infected-sites (occu-
pied) infect their neighbors at rate λ/2 (n = 1, d = 1) and recover at rate
1. This figure is reprinted from Ref. [31]

1.4.1. The contact process. The contact process [37, 38, 39] which was

proposed by T.E. Harris in 1974 is a prototype for nonequilibrium lattice models

similar to the Ising model for equilibrium lattice models. It can be viewed as a model

for describing epidemic processes8 without immunity [31].

The contact process is defined on a d-dimensional hypercubic lattice. Each site

can be occupied by a particle (active, denoted by A), or it can be empty (inactive,

denoted by I). The time evolution of the contact process is a continuous-time Markov

process [40] having two basic transitions. (i) Occupied sites can spontaneously become

empty with a “healing” rate µ which can be set to unity. (ii) Empty sites get occupied

(“infection”) at a rate nλ/(2d) where n is the number of occupied nearest neighbor

sites, and λ is called the infection rate.

The value of λ controls the behavior of the contact process. For sufficiently

small λ, the healing process dominates the state of the system. Thus, all sites will

eventually become empty, resulting in a completely inactive state. For sufficiently

large λ, the infection process dominates and a nonzero fraction of sites will remain

occupied. This state is called active state.

The nonequilibrium phase transition between the inactive and active states

which occurs at a critical value λcis a so-called “absorbing-state” transition: If the

system is in the inactive state (the absorbing state), it cannot leave it anymore.

1.4.2. Critical phenomena of the contact process. The order parameter

of the nonequilibrium phase transition in the contact process is the density of active

sites ρA

ρA(t) =<
1

N

∑
i

si(t) >, (56)

8The representative model is the SIR(S) model, the contact process is a generalized version of it
on lattices.
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where N is the total number of sites, si = 0, 1 is the occupation number of site i, and

〈· · ·〉 denotes the average over the realizations of the Markov process. In the long time

limit, if the system is in the active phase (λ > λc), ρA reaches a nonzero stationary

value ρstatA , and if the system is in the inactive phase (λ < λc), the stationary value

of ρA is zero. Close to λc, the stationary value of the order parameter ρA follows a

power-law

ρstatA ∼ (λ− λc)β, (57)

where β is the order parameter critical exponent.

Imagine the contact process starting from a single active site embedded in an

otherwise inactive lattice. For λ < λc, we expect all activity to die out with time,

while for λ > λc, activity will survive even for t→∞ with a certain probability. This

survival probability Ps is thus zero in the inactive phase, but nonzero in the active

phase. Close to λc, Ps behaves as

P∞ = lim
t−→∞

Ps(t) ∼ (λ− λc)β
′
, (58)

where β′ is another critical exponent.

In analogy with equilibrium critical points, one can introduce a correlation

length

ξ⊥ ∼ |λ− λc|−ν⊥ , (59)

and a correlation time

ξ‖ ∼ |λ− λc|−ν‖ , (60)

which characterize the clusters of active sites. Here ν‖ and ν⊥are the critical exponents

that characterize the divergence of the correlations in the vicinity of the critical point.

The ratio of these two critical exponents produces the dynamical exponent z = ν‖/ν⊥,

thus

ξ‖ = ξz⊥. (61)

The four critical exponents, ν‖, ν⊥, β , and β′, completely determine the universality

class of a phase transition in a nonequilibrium lattice model.
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In analogy to equilibrium critical phenomena, the behavior of observables close

to λc is characterized by scaling. Let us discuss critical behavior and scaling properties

of the contact process. If we set ∆ = λ− λc, the scaling form of the order parameter

reads

ρA(t, ∆) ∼ t
− β
ν‖F (t

1
ν‖∆), (62)

where F is a universal scaling function [31, 41]. At criticality, ρA is simplified to a

time-dependent form,

ρA(t) ∼ t−α, (63)

where the critical exponent α = β/ν‖ describes the time evolution of the density (for

instance, starting from a fully occupied lattice). The survival probability has the

analogous scaling form

Ps(t, ∆) ∼ t
− β
′

ν‖F (t
1
ν‖∆), (64)

where F is another scaling function. Therefore the time evolution of this quantity is,

at criticality,

Ps(t) ∼ t−δ, (65)

where the critical exponent δ = β
′
/ν‖ describes the survival probability at criticality

of a cluster starting from a single seed.

Next we study the pair connectedness function C(x, t) = 〈sx(t) · s0(0)〉 which

describes the probability that site x is active at time t when starting from a single

active site at x = 0 and t = 0. This correlation function has a scaling form

C(x, t) ∼ tθ−
d
zX(xt−

1
z ,∆t

1
ν‖ ), (66)

where d is the dimensionality and θ is the so-called initial slip critical exponent. In

the active phase, as mentioned, ρA(t) and Ps(t) both saturate in the long time limit.

Therefore their product can be replaced by the autocorrelation

C(0,∞) = ρPs ∼ ∆β+β′ . (67)
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Comparing with the scaling form Eq. (63) in the limit of x→ 0 gives

C(0, t) ∼ tθ−
d
zX(∆t

1
ν‖ ). (68)

Thus the time-independent form of Eq. (63) in the long time limit is

C(0,∞) ∼ ∆−ν‖(θ−
d
z

). (69)

Now we obtain the hyper scaling law, by using Eqs. (64) and (66),

θ − d

z
= −β + β

′

ν‖
, (70)

which holds below the upper critical dimension d+
c .

The number of occupied sites at time t when starting with a single occupied site

at time 0 can be found from

N(t) =

∫
dd~xC(~x, t). (71)

Therefore, at criticality, the number of occupied sites behaves as

N(t) ∼ tθ. (72)

For the contact process, the upper critical dimension can be determined by using

the hyper scaling law. The initial slip exponent θ shows a non-zero positive value in

this model [31, 42, 41, 43, 44], thus

d

z
− β + β

′

ν‖
> 0, (73)

and mean field values of critical exponents, i.e. z = 2, β = β
′

= 1, and ν‖ = 1, give

d > 4. So the upper critical dimension is

d+
c = 4. (74)

Although a general absorbing state transition is characterized by four exponents, we

will see it Subsubsec. 1.4.4 that for the contact process β = β
′

and thus α = δ.
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1.4.3. Mean-field approximation for the contact process. A basic

understanding of the contact process can be achieved by means of a mean-field ap-

proximation. To derive the mean-field equation, we replace the occupation number

si of the neighbors of a given site by their average ρA. This gives

∂ρA
∂t

= (λ− 1)ρA − λρ2
A. (75)

This equation has two stationary solutions, i.e., ρA = 0 and ρA = (λ− 1) /λ. The

first one, ρA = 0 represents the inactive state, the second one represents the active

state. The phase transition occurs at λ = 1, when the active solution first appears

and the inactive one becomes unstable. Setting ∆ = λ− λc = λ− 1, we obtain

ρA ∼ ∆ ' (λ− λc) = (λ− λc)βMF (76)

in the vicinity of critical point. Thus the critical exponent βMF has the value βMF = 1.

The time evolution of the order parameter is given by

ρA(t) ∼ t−1 (77)

at the critical point. Close to the critical point, we instead obtain

ρA(t) =
∆

λ+ ( ∆
ρ0
− λ) exp(−∆t)

, (78)

where ρ0 = ρ(0) is a constant. Asymptotically, ρA(t) shows an exponential decay,

i.e. ρA(t) ∼ e−|∆|t ∼ e−t/ξ‖ , independent of the sign9 of ∆. From this asymptotic

behavior, we can obtain the correlation time

ξ‖ ∼ |λ− λc|−ν‖MF (79)

with ν‖MF = 1.

To discuss spatial correlations, we need to permit spatial variations and add a

gradient term similar to Subsubsec. 1.1.2. Therefore the mean-field equation now is

∂ρA
∂t

= (λ− 1)ρA − λρ2
A +D∇2ρA, (80)

9For ∆ > 0, ρA(t) ∼ ∆
λ + ∆

λ2

(
λ− ∆

ρ0

)
e−∆t and for ∆ < 0, ρA(t) ∼ −∆

(
λ− ∆

ρ0

)−1

e∆t
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where ρA = ρA(~x, t). Comparing space and time derivatives suggests [41]

ξ‖ ∼ ξ2
⊥, (81)

where the dynamic exponent in the mean-field theory is zMF = 2 and a critical

exponent ν⊥MF = 1/2 for correlation length emerges via zMF = ν‖MF/ν⊥MF .

1.4.4. Universality class-Directed percolation (DP). According to the

so-called DP conjecture [45, 46], the contact process should belong to the directed

percolation universality class. The DP conjecture was introduced by Jassen (1981)

and Grassberger (1982). It states that a system is in the DP universality class if (i) it

has a one-component order parameter and exhibits a continuous phase transition into

a unique absorbing state, provided that (ii) the dynamic rules involve only short-range

processes, and (iii) the system has no additional symmetries or quenched randomness

[31, 45, 46].

What is directed percolation? In normal (isotropic) percolation, as discussed in

Subsec 1.3, a site can be connected to its neighbors in all directions. In contrast, in

directed percolation, only bonds in one direction are allowed, as illustrated in Fig.

1.6.

Epidemic process such as the contact process can be mapped onto DP by relating

the time direction to the special direction in the DP problems.

Figure 1.6. Difference between isotropic and directed percolation. Left : Bond per-
colation from a single seed (red dot) toward all directions. Right : Per-
colation (represented by arrows) is only allowed in downward direction,
and dashed bonds represent forbidden directions in percolation process.
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MF d = 1 d = 2 d = 3

β = β′ 1 0.276486(8) 0.584(4) 0.81(1)
ν⊥ 1/2 1.096854(4) 0.734(4) 0.581(5)
ν‖ 1 1.733847(6) 1.295(6) 1.105(5)
z 2 1.580745(10) 1.76(3) 1.90(1)

α = δ 1 0.159464(6) 0.4505±0.0010 0.732±0.004
θ 0 0.313686(8) 0.2995±0.0010 0.114±0.004

Table 1.2. Critical exponents of the directed percolation universality class: In d = 1,
exponents ν⊥ and ν‖ are obtained from a series expansion by Jensen
(1999). Exponents of other dimensions come from computational calcula-
tions which were performed by Voigt and Ziff for d = 2 (1997) and Jensen
for d = 3 (1992) [42]

.

1.4.5. Generalized contact process. In the previous sections we in-

troduced the contact process which has a single absorbing-state and we found that

its critical behavior falls into the directed percolation universality class. The com-

mon feature of lattice models belonging into the DP class is the existence of a single

absorbing-state. According to the DP conjecture, if there are several symmetric

absorbing states in the system, the critical behavior is expected to belong to a uni-

versality class other than DP.

Examples of universality classes with two absorbing-states are the parity-conserving

(PC) universality class [47, 48, 49, 50] and the Z2-symmetric directed percolation

(DP2) universality class [31, 51] which coincide in 1d but are distinct classes in higher

dimensions. The PC class is one of the ubiquitous classes for nonequilibrium lattice

models. One representative model is the branching and annihilating random walk with

an even number of offspring (BARWe) [31, 32, 50], where the number of particles is

conserved mod 2. The generalized contact process [31, 51] with two absorbing-states

is a representative model in the DP2 class.

The generalized contact process was suggested by H. Hinrichsen in 1997 [51].

The difference between this model and the simple contact process is the number of

absorbing states. While the simple contact process has a single absorbing state, the

generalized contact process involves m symmetric absorbing states. The model is
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defined on a lattice whose sites can now be in one of m+ 1 states, the active state A,

or one of m inactive states Ik (k = 1, · · · ,m). k is sometimes called the color index10.

The dynamic rules of this model are defined by the transition rates

w (si,t+dt, si+1,t+dt|si,t, si+1,t) for pairs of nearest neighbor sites,

w (A, Ik|A,A) = w (Ik, A|A,A) = µ̄/m,

w (Ik, Ik|Ik, A) = w (Ik, Ik|A, Ik) = µk,

w (A,A|Ik, A) = w (A,A|A, Ik) = 1,

w (A, Ik|Il, Ik) = w (Il, A|Il, Ik) = 1, (82)

where µ̄ and µk are healing rates and the indices k and l denote different absorbing

Figure 1.7. Schematic update of the generalized contact process. The occupied site is
represented by the solid dot and different colored empty sites are labeled
by k and l (k 6= l).

states k 6= l. Full symmetry between the absorbing states requires the condition

µ1 = µ2 = · · · = µm = µ. Generally we may set µ̄ = µ, if there is no attractive or

repulsive interaction between occupied sites. In the above dynamics, inactive sites

with random colors are created within active islands but transformations between

different colored states are not allowed. The first three rates in Eq. (79) are analogous

to the simple contact process. The 4th rate prevents domains of different colors from

sticking together. Instead, they can separate and move via the creation of active sites.

1.4.6. Universality class of the generalized contact process. According

to the DP conjecture, a transition with a single absorbing state will be in the DP

universality class. If the symmetry among different absorbing states does not exist in

the generalized contact process (GCP), one of them will be dominant in the long time

10There is no deeper physical meaning here, this word is just used as an index to distinguish the
m inactive states in Ref. [51].
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β β
′

θ α δ z

d = 1 0.92(3) 0.92(3) 0.000(1) 0.285(5) 0.285(5) 1.747
d = 2 0 1 0 0 1 2

Table 1.3. Critical exponents of DP2 universality class. For d = 1 all values coincide
with the PC class and for d = 2 all exponents take mean-field values with
logarithmic corrections according to the GV class [32].

limit and we may expect DP critical behavior. However, the non-DP critical behavior

is expected, if the symmetry exists. Especially if there are two symmetric absorbing

states, the GCP belongs to the Z2-symmetry directed percolation class (DP2 class).

For the d = 1 this class coincides with the parity-conserving class (PC class) which is

represented most prominently by branching annihilating walks with an even number

of offspring (BAREe). This model is defined by particles diffusing and undergoing

reactions

2A
k1→ ∅

A
k2→ (n+ 1)A, (83)

where k1 and k2 are rates corresponding to annihilating and branching and n =

2, 4, 6, ... indicates the number of offspring. The long-time dynamics of the GCP with

two absorbing states can be mapped onto BARWe process in 1d by considering the

domain walls I1I2 and I2I1 to be particles, I1I2 = Ω12 [51, 42]. The rates (79) then

create the reactions

Ω12Ω21 → ∅

Ω12 → Ω12Ω21Ω12, (84)

corresponding to annihilation and branching of these particles. However in higher

dimension systems, the interfaces11 between differently colored inactive domains are

lines, therefore we cannot treat the interface as a particle in mapping to the BARWe.

The values of the critical exponents of the DP2/PC universality class in 1d are

known with high accuracy (see Table 1.3). In 2d, the DP2 class is very close to its

upper critical dimension. In fact, based on a conjecture by Dornic et al. [52], the

11We may think these interfaces as strings or walls of As. See Refs [31, 51].
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2d DP2 class maps onto the generalized voter model12 (GV) class which is exactly at

its upper critical dimension. This suggests that the upper critical dimension of DP2

universality class is d+
c = 2.

1.5. SUMMARY

In this section we introduced the background and theories to support the next

sections. In first two subsections (Subsecs 1.1 and 1.2), we discussed equilibrium

phase transitions based on the Ising model and its mean-field theory which were dis-

cussed via Landau theory. Although Landau theory is incorrect in low-dimensional

systems, this theoretical approach to criticality still gives valuable insights into phase

transitions. Going beyond mean-field theory, we then introduced the effects of fluctu-

ations and the Ginzburg criterion. Finally, we discussed Widom’s scaling assumption

and the resulting scaling forms of physical quantities.

In Subsec 1.3, we introduced the classical percolation theory which concerns the

movement of particles on randomly connected network systems. We mainly discussed

a site percolation problem in order to apply it to site dilutions in sections 2 and 3.

In Subsec 1.4, we introduced two nonequilibrium lattice models, i.e., the con-

tact process and the generalized contact process. Nonequilibrium phase transitions

in these models are the primary topic of this dissertation. After explaining a key dif-

ference between equilibrium and nonequilibrium systems we introduced the nonequi-

librium critical properties of the contact process. Then we discussed the generalized

contact process which is not in the universality class of the contact process. Thus we

showed two different kinds of universality classes for nonequilibrium lattice models.

The remainder of this thesis consists of reprints of four papers. Sections 2 and 3

deal with nonequilibrium phase transitions of the contact process and the generalized

contact process on percolating lattices. Sections 4 and 5 explore the phase diagram

and the phase transitions of the generalized contact process in more detail.

12The voter model is defined by spin-flip dynamics, but “opinions” is used instead of spin config-
urations. Two absorbing-states can be represented by two spins states (all spin up or down).



27

BIBLIOGRAPHY

[1] H. Stocker W. Greiner, L. Neise. Thermodynamics and statistical mechanics.
Springer-Verlag, New York, 1995.

[2] Thomas Andrews. The bakerian lecture: On the continuity of the gaseous and liq-
uid states of matter. Philosophical Transactions of the Royal Society of London,
159, 1869.

[3] H. Eugene Stanley. Introduction to phase transitions and critical phenomena.
Oxford Univ. Press, Oxford, 1971.

[4] L. Landau. Theory of phase transformations. i. Zh. Eksp. Teor. Fiz. Phys. Z.
Sowjetunion, 7 11:19 26, 1937 1937.

[5] L. Landau. Theory of phase transformations. ii. Eksp. Teor. Fiz. Phys. Z.
Sowjetunion, 7 11:627 545, 1937 1937.

[6] L. Onsager. Phys. Rev., 65:117–149, 1944.

[7] E. Ising. Z. Physik, 31:253, 1925.

[8] S. G. Brush. Rev. Mod. Phys., 39:883–893, 1967.

[9] B. Bergersen M. Plischke. Equilibrium statistical physics. Prentice Hall, New
Jersey, 1989.

[10] R. K. Pathria. Statistical mechanics. Butterworth Heinemann, Oxford, 1996.

[11] V. L. Ginzburg. Sov. Phys. Sol. State., 2:1824, 1960.

[12] K. G. Wilson. Phys. Rev. B, 4:3174, 1971.

[13] K. G. Wilson. Phys. Rev. B, 4:3184, 1971.

[14] R. Sknepnek. Magnetic and superconducting quantum critical behavior of itiner-
ant electronic systems. PhD thesis, Univ. of Missouri-Rolla, 2004.

[15] L. P. Kadanoff et. Rev. Mod. Phys., 39:395, 1967.

[16] K. Huang. Statistical mechanics. John Wiley & Sons, New York, 1987.

[17] B. Widom. J. Chem. Phys., 43:3892, 1965.

[18] L. E. Reichl. A morden course in statistical physics. John Wiley & Sons, New
York, 1998.

[19] P. J. Flory. J. Am. Chem. Soc., 63:3089, 1941.



28

[20] P. J. Flory. Statistical mechanics of chain molecules. Interscience Publisher, New
York, 1969.

[21] D. Stauffer and A. Aharony. Introduction to percolation theory. Taylor & Francis,
London, 1994.

[22] W. H. Stockmayer. J. Chem. Phys., 11:45, 1943.

[23] J. Hammersley S. Broadbent. Percolation processes i. crystals and mazes. Pro-
ceedings of the Cambridge Philosophical Society, 53:629–641, 1957.

[24] J. W. Essam. Rep. Prog. Phys., 43, 1980.

[25] K. M. Gwilym J. W. Essam. J. Phys. C: Solid State Phys., 4:L228, 1971.

[26] A. J. McKane T. C. Lubensky. J. Phys. A: Math. Gen., 14:L157–Ll61, 1981.

[27] E. Stoll C. Domb, T. Schneider. J. Phys. A: Math. Gen., 9:L90, 1975.

[28] C. Domb. J. Phys. A: Math Gen., 9:L141, 1976.

[29] M. E. Fisher. Physics, 3:225, 1967.

[30] T. Vojta. J. Phys. A, 39:R143–R205, 2006.

[31] H. Hinrichsen. Adv.Phys., 49:815–958, 2000.

[32] G. Odor. Rev. Mod. Phys., 76:663, 2004.

[33] T. Liggett. Interacting particle systems. Springer-Verlag, New York, 1985.

[34] F. Reif. Fundamentals of statistical and thermal physics. McGRAW-HILL, Sin-
gapore, 1985.

[35] D. Chandler. Introduction to modern statistical mechanics. Oxford university
press, New York, 1987.

[36] R. Dickmann J. Marro. Nonequilibrium Phase Transitions in Lattice Models.
Cambridge university press, Cambridge, 1999.

[37] T. E. Harris. Ann. Prob., 2:969, 1974.

[38] A. de la Torre P. Grassberger. Ann. Phys. (N.Y.), 122:373, 1979.

[39] R. Dickman. Nonequilibrium Statistical Mechanics in One Dimension. Cam-
bridge University Press, Cambridge, England, 1997.

[40] A. A. Markov. Theory of Algorithms. Academy of Sciences of the USSR, 1954.

[41] S. Lubeck. International Journal of Modern Physics B, 18:3977, 2004.

[42] T. Vojta M. Y. Lee. Phys. Rev. E, 81:061128, 2010.



29

[43] J. Mast T. Vojta, A. Farquhar. Phys. Rev. E, 79:011111, 2009.

[44] I. Jensen. Phys. Rev. A, 45:R563–R566, 1992.

[45] H. K. Janssen. Z. Phys. B, 42:151–154, 1981.

[46] P. Grassberger. Z. Phys. B, 47:365–374, 1982.

[47] D. ben Avraham D. Zhong. Phys. Lett. A, 209:333–337, 1995.

[48] I. Jensen. J. Phys. A, 26:3921–3930, 1993.

[49] I. Jensen. Phys. Rev. E, 50:3623–3633, 1994.

[50] U. C. Tauber J. Cardy. Phys. Rev. Lett., 77:4870, 1996.

[51] H. Hinrichsen. Phys. Rev. E, 55:219, 1997.

[52] J. Chave I. Dornic, H. Chate and H. Hinrichsen. Phys. Rev. Lett., 87:045701,
2001.



30

2. NONEQUILIBRIUM PHASE TRANSITION ON A RANDOMLY
DILUTED LATTICE

Thomas Vojta and Man Young Lee
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Abstract13

We show that the interplay between geometric criticality and dynamical fluctuations

leads to a novel universality class of the contact process on a randomly diluted lattice.

The nonequilibrium phase transition across the percolation threshold of the lattice is

characterized by unconventional activated (exponential) dynamical scaling and strong

Griffiths effects. We calculate the critical behavior in two and three space dimensions,

and we also relate our results to the recently found infinite-randomness fixed point in

the disordered one-dimensional contact process.

13All of this section is reproduced from Physical Review Letters 96 035701 (2006) and then
reformatted and renumbered
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Nonequilibrium systems can undergo continuous phase transitions between dif-

ferent steady states. These transitions are characterized by collective fluctuations over

large distances and long times similar to the behavior of equilibrium critical points.

Examples can be found in population dynamics and epidemics, chemical reactions,

growing surfaces, and in granular flow and traffic jams (for recent reviews see, e.g.,

Refs. [1, 2, 3, 4, 5, 6]).

If a nonequilibrium process is defined on a randomly diluted spatial lattice, its

dynamical fluctuations coexist with geometric fluctuations. Site or bond dilution

defines a percolation problem for the lattice with a geometric phase transition at the

percolation threshold [7]. In this Letter we address the question of how the interplay

between geometric criticality due to percolation and dynamical fluctuations of the

nonequilibrium process influences the properties of the phase transition.

Our starting point is the contact process [8], a prototypical system exhibiting a

nonequilibrium phase transition. It is defined on a d-dimensional hypercubic lattice

(d ≥ 2). Each site can be active (occupied by a particle) or inactive (empty). In the

course of the time evolution, active sites infect their neighbors, or they spontaneously

become inactive. Specifically, the dynamics is given by a continuous-time Markov

process during which particles are created at empty sites at a rate λn/(2d) where n

is the number of active nearest neighbor sites. Particles are annihilated at unit rate.

For small birth rate λ, annihilation dominates, and the absorbing state without any

particles is the only steady state (inactive phase). For large birth rate λ, there is a

steady state with finite particle density (active phase). The two phases are separated

by a nonequilibrium phase transition in the directed percolation [9, 10] universality

class at some λ = λ0
c .

We introduce quenched site dilution [11] by randomly removing lattice sites

with probability p. The resulting phase diagram of the site-diluted contact process

is sketched in Fig. 2.1. For small impurity concentrations below the percolation

threshold of the lattice, p < pc, the active phase survives, but the critical birth rate

increases with p (to compensate for the missing neighbors). Right at the percolation

threshold the active phase survives on the infinite percolation cluster for λ > λ∗. The

(multi) critical birthrate λ∗ must be smaller than the critical birthrate of the one-

dimensional (1D) contact process because the critical percolation cluster is connected,

infinitely extended, and its fractal dimension is Df > 1. For p > pc, no active phase

can exist because the lattice consists of disconnected clusters of finite size that do not

support a steady state density of active sites.
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The contact process on a site-diluted lattice therefore has two nonequilibrium

phase transitions, separated by a multicritical point. For p < pc, the transition

(marked by “a” in Fig. 2.1) is expected to be in the universality class of the generic

disordered contact process [12, 13, 14] which has reattracted considerable attention

recently [15, 16]. In contrast, the phase transition across the percolation threshold pc

of the lattice for λ > λ∗ (transition “b” in Fig. 2.1) has received much less attention.

In this Letter, we show that the interplay between geometric criticality and

dynamic fluctuations leads to a novel universality class for this nonequilibrium phase

transition. Even though the transition is driven entirely by the geometry of the

lattice, the dynamical fluctuations of the contact process enhance the singularities

in all quantities involving dynamic correlations. Our results can be summarized as

follows. The dynamical scaling is not of conventional power-law form but activated,

i.e., the relation between correlation length ξ⊥ and correlation time ξ‖ is exponential,

ln ξ‖ ∼ ξψ⊥ (85)

with the critical exponent ψ being equal to the fractal dimension of the critical per-

colation cluster, ψ = Df . As a result, the long-time decay of the density ρ of active

sites at p = pc is ultra-slow,

ρ(t) ∼ [ln(t/t0)]−δ̄ . (86)

Figure 2.1. Schematic phase diagram of a site diluted contact process as function of
impurity concentration p and birth rate λ. There is a multicritical point
at p = pc and λ = λ∗. The phase transition (b) across the percolation
threshold of the lattice is the topic of this Letter.
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The exponent δ̄ = βc/(νcDf ) is determined by Df together with the order parameter

and correlation length exponents, βc and νc, of the lattice percolation transition [17].

In contrast to the enhanced dynamical singularities, the exponents of static quantities

like the steady state density ρst and the spatial correlation length ξ⊥ are identical the

corresponding lattice percolation exponents,

ρst(p) ∼ |∆|βc (∆ < 0) , (87)

ξ⊥ ∼ |∆|νc . (88)

where ∆ = p − pc measures the distance from the percolation threshold. Off criti-

cality, i.e., away from the percolation threshold, we find strong Griffiths effects [18]

characterized by a non-exponential density decay [12],

ρ(t) ∼ (t/t0)−d/z
′

(p > pc) (89)

ρ(t)− ρst ∼ e−[(d/z′′) ln(t/t0)]1−1/d

(p < pc) , (90)

where the nonuniversal exponents z′ and z′′ diverge as z′, z′′ ∼ ξ
Df
⊥ for p→ pc. In the

remainder of the Letter we sketch the derivation of these results and calculate expo-

nent values and additional observables. We also relate our results to the disordered

1D contact process [15, 16] and to the diluted quantum Ising model [19].

Let us start by considering the steady state density ρst of active sites (i.e.,the

order parameter of the transition). A nonzero steady state density can only develop

on the infinite percolation cluster; finite clusters do not contribute because they even-

tually go into the inactive state via a rare fluctuation. For λ > λc, the infinite cluster

is in the active phase. The total steady state density is proportional to the number of

sites in the infinite cluster, ρst ∼ P∞(p) ∼ (pc − p)βc . The order parameter exponent

of the nonequilibrium transition is therefore identical to that of the lattice percolation

transition, β = βc, as stated in (87). To determine the spatial correlation length ξ⊥

we note that the correlations of the contact process cannot extend beyond the con-

nectedness length ξc of the percolating lattice because sites on different percolation

clusters are decoupled. On the other hand, for λ > λ∗, all sites on the same cluster

are strongly correlated in space even though they collectively fluctuate in time. We

thus conclude ξ ∼ ξc and ν = νc in agreement with (88).

We now study the time dependence of the density ρ(t) of active sites, starting

from a completely active lattice. We first consider the contact process on a single

percolation cluster of finite size (number of sites) s. For λ > λ∗ such a cluster is
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locally in the active phase. It therefore has a metastable state with a nonzero density

of active sites. This metastable state can decay into the inactive state only via a rare

collective fluctuation involving all sites of the cluster. The probability for such a rare

event decreases exponentially with the size s of the cluster. Therefore, the life time

ts of the metastable active state on a cluster increases exponentially with its size s,

ts(s) ∼ t0e
A(λ)s , (91)

where t0 is some microscopic time scale. The prefactor A(λ) vanishes at the mul-

ticritical point, A(λ∗) = 0, and increases with increasing λ. The number of sites s

of a percolation cluster is connected to its linear size Rs via s ∼ R
Df
s . Therefore,

(91) establishes the exponential relation between length and time scales, ln ts ∼ R
Df
s

leading to activated dynamical scaling (85).

After having analyzed a single cluster we turn to the full percolation problem.

From classical percolation theory, we know that close to pc the number ns of occupied

clusters of size s per lattice site (excluding the infinite cluster for p < pc) obeys the

scaling form

ns (∆) = s−τcf
(
s∆1/σc

)
. (92)

The scaling function f(x) behaves as

f(x) ∼ exp(−B1x) (p > pc) (93)

f(x) = const (p = pc) (94)

f(x) ∼ exp[−(B2x)1−1/d] (p < pc). (95)

where B1, B2 are constants. The exponents τc and σc determine all critical exponents

of the percolation transition of the lattice including the correlation length exponent

νc = (τc − 1)/(dσc), the order parameter exponent βc = (τc − 2)/σc, and the fractal

dimension Df = d/(τc − 1) of the percolating cluster [7].

In order to obtain the total density of active sites for the contact process on

the diluted lattice, we sum the number of active sites over all percolation clusters.

Combining the cluster size distribution (92) with the lifetime of the metastable active

state (91) leads to

ρ(t,∆) ∼
∫
ds s ns(∆) exp[−t/ts(s)] (96)
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Right at the percolation threshold, this reduces to

ρ(t, 0) ∼
∫
ds s1−τc exp[−(t/t0e

As)] . (97)

The leading behavior of this integral can be found by noticing that only islands with

size s > smin(t) = A−1 ln(t/t0) contribute at time t. The critical long-time dependence

of the total density is thus given by

ρ(t, 0) ∼ [ln(t/t0)]2−τc (p = pc). (98)

This completes the derivation of (86) with the critical exponent δ̄ given by δ̄ = τc−2 =

βc/(νcDf ) in agreement with general scaling arguments [15, 16].

We now consider the behavior of the density off criticality. In the inactive phase,

p > pc, the time dependence of the density is given by

ρ(t,∆) ∼
∫
dss1−τc exp[−B1s∆

1/σc − (t/t0e
As)]. (99)

For long times, the leading behavior of the integral can be calculated using the saddle-

point method, giving

ρ(t,∆) ∼ t−(B1/A)∆1/σc
(p > pc) (100)

equivalent to (89). The nonuniversal exponent z′ is given by z′ = (Ad/B1)∆−1/σc ∼
ξ
Df
⊥ .

In the active phase, p < pc, there is a nonzero steady state density ρst coming

from the infinite percolation cluster. However, the approach of the density towards

this value is still determined by the slow decay of the metastable states of the finite

percolation clusters

ρ(t,∆)− ρst(∆) ∼ (101)

∼
∫
dss1−τc exp

[
−
(
B2s|∆|1/σc

)1−1/d − (t/t0e
As)
]

Using the saddle point method to calculate the leading long-time behavior gives (for

p < pc)

ρ(t,∆)− ρst(∆) ∼ e−[(B2/A)|∆|1/σc ln(t/t0)]
1−1/d

. (102)
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This completes the derivation of (90) with z′′ = (Ad/B2)|∆|−1/σc ∼ ξ
Df
⊥ . The non-

exponential off-critical relaxation of the density (89,90) is characteristic of a Griffiths

region in the contact process [12, 18]. We also point out that time and spatial cor-

relation length enter these equations in the form of the combination ln(t)/ξ
Df
⊥ again

characteristic of activated scaling.

We now turn to the influence of an external source field h that describes spon-

taneous particle creation at a rate h at each lattice site. To determine the steady

state density as a function of h we again start by considering a single percolation

cluster of size s. For λ > λ∗, the cluster is active if at least one particle has been

spontaneously created on one of the s sites within the life time ts(s) = t0e
As. For

small h, the average number of particles created on a cluster of size s within time ts is

Ms(h) = hsts = hst0e
As. If Ms > 1, the cluster is (almost) always active. If Ms < 1,

it is active with a probability proportional to Ms. The total steady state density is

obtained by summing over all clusters

ρst(h,∆) ∼
∫
ds s ns(∆) min[1,Ms(h)] . (103)

Evaluating this integral analogously to the time-dependent density (96) yields, for

small fields h,

ρst(h) ∼ [ln(h0/h)]−δ̄ (p = pc), (104)

ρst(h) ∼ (h/h0)d/z
′

(p > pc), (105)

ρst(h) ∼ exp [−(d/z′′) ln(h0/h)]
1−1/d

(p < pc) , (106)

where h0 ∼ 1/t0. At p = pc, the relation between density and field is logarithmic, as

expected from activated scaling. Off criticality, we find strong Griffiths effects similar

to those in the time-dependence of the density.

The above results can also be derived from a scaling theory. In the active phase,

the density is proportional to the number of sites in the infinite percolation cluster.

Thus, its scale dimension must be βc/νc. Time must enter via the scaling combination

ln(t)bDf reflecting the exponential dependence of the life time (91) on the cluster size.

The field h, being a rate, scales like inverse time. We therefore obtain the following

scaling form:

ρ[∆, ln(t), ln(1/h)] = bβc/νcρ[∆b−1/νc , ln(t)bψ, ln(1/h)bψ] (107)
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Exponent d = 2 d = 3
β = βc 5/36 0.417
ν = νc 4/3 0.875
ψ = Df = d− βc/νc 91/48 2.523
δ̄ = βc/(νcDf ) 5/91 0.188

Table 2.1. Critical exponents of the nonequilibrium phase transition at p = pc in two
and three space dimensions.

where b is an arbitrary (length) scale factor and ψ = Df . This form is consistent with

all our explicit results.

All critical exponents of the nonequilibrium phase transition are determined

by the classical percolation exponents of the lattice. In two space dimensions, their

values are known exactly and in three dimensions they are known numerically with

high accuracy [7]. Table I shows numerical exponent values for these cases.

We also briefly comment on the early time behavior. For λ > λ∗ each percolation

cluster is locally in the active phase. Starting from a single active seed, the cloud

of active sites thus initially grows ballistically, i.e., the radius of the cloud grows

linearly with time, until a metastable state is reached in which it covers the entire

percolation cluster. The time required for this initial spreading on an island of size

s is ti(s) ∼ Rs ∼ s1/Df . As discussed above, the metastable state decays only at

the much larger time scale ts(s) ∼ eAs. We thus arrive at the somewhat surprising

conclusion that the early time behavior of the contact process on our diluted lattice

is much faster than the logarithmically slow long-time decay of the density.

In the remaining paragraphs, we discuss the generality of our results, compare

them to the transition in the diluted quantum Ising model [19] and to the recently

found infinite-randomness critical point in a random 1D contact process [15, 16]. We

also compare to a general classification of phase transitions with quenched disorder

[20].

The logarithmic time and field dependencies (86) and (104) at the nonequilib-

rium phase transition at p = pc as well as the strong Griffiths effects in its vicinity are

the direct result of combining the spectrum of percolation cluster sizes (92) with the

exponential dependence (91) of the life time on the cluster size. We therefore expect

similar behavior in other diluted equilibrium or nonequilibrium systems that share

this exponential relation between length and time scales. One example is the diluted
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transverse field Ising model [19]. In this system, the energy gap of a cluster decreases

exponentially with its size. As a result, the scaling behavior at the quantum phase

transition across the percolation threshold of the lattice is very similar to the one

found in this paper.

Recently, the critical point of the 1D contact process with spatial disorder was

found to be of infinite-randomness type [15, 16]. Analogous behavior is expected

for the generic disordered directed percolation transition in higher dimensions, e.g.,

the transition at p < pc in the site-diluted contact process (transition a in Fig. 2.1).

Our critical point at the percolation threshold shares some characteristics with these

infinite-randomness critical points, notably the exponential relation between correla-

tion length and time as well as the logarithmically slow decay of the total density.

However, it belongs to a different universality class with novel critical exponents.

Moreover, the early time behavior is different (logarithmically slow at the generic

infinite randomness critical point but of power-law type at our transition).

Lastly, we point out that our results are in agreement with a general classification

of phase transitions with quenched disorder (and short-range interactions) according

to the effective dimensionality deff of the droplets or clusters [20]. Three cases can

be distinguished: (i) If the clusters are below the lower critical dimension of the

problem, deff < d−c , the critical behavior is of conventional power-law type and the

Griffiths effects are exponentially weak. (ii) If deff = d−c , the critical point shows

activated scaling accompanied by strong, power-law Griffiths effects. This case is

realized in random transverse field Ising magnets [19, 21] as well as in our diluted

contact process. (iii) If deff > d−c , the phase transition is smeared because locally

ordered clusters can undergo the phase transition independently from the bulk. This

occurs, e.g., for some metallic quantum magnets [22] or for the contact process with

extended defects [23, 24].

In conclusion, we have shown that the contact process on a diluted lattice has

unusual properties. The interplay between geometric criticality and dynamical fluctu-

ations leads to a novel universality class with activated scaling and ultraslow dynam-

ics. Interestingly, despite its ubiquity in theory, experimental observations of directed

percolation scaling [25] are very rare. Our results suggest that peculiar disorder effects

may be responsible for this in at least some of the experiments.
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Abstract14

We study nonequilibrium phase transitions of reaction-diffusion systems defined

on randomly diluted lattices, focusing on the transition across the lattice percolation

threshold. To develop a theory for this transition, we combine classical percolation

theory with the properties of the supercritical nonequilibrium system on a finite-size

cluster. In the case of the contact process, the interplay between geometric criticality

due to percolation and dynamical fluctuations of the nonequilibrium system leads to

a new universality class. The critical point is characterized by ultraslow activated

dynamical scaling and accompanied by strong Griffiths singularities. To confirm

the universality of this exotic scaling scenario we also study the generalized contact

process with several (symmetric) absorbing states, and we support our theory by

extensive Monte-Carlo simulations.

14All of this section is reproduced from Physical Review E 79 041112 (2009) and then reformatted
and renumbered. This paper is an extended version of PRL 96 035701 (2006), thus many parts of
this section are overlapped in section 2
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3.1. INTRODUCTION

In recent years, considerable effort has been directed towards identifying and

classifying phase transitions far from thermal equilibrium. Such nonequilibrium tran-

sitions can be found in a wide variety of problems in biology, chemistry, and physics.

Examples include population dynamics, the spreading of epidemics, surface chemi-

cal reactions, catalysis, granular flow, traffic jams as well as growing surfaces and

interfaces (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8]). Nonequilibrium phase transitions are

characterized by large scale fluctuations and collective behavior in space and time

very similar to the behavior at equilibrium critical points.

A particularly interesting situation arises when an equilibrium or nonequilibrium

many-particle system is defined on a randomly diluted lattice. Then, two distinct

types of fluctuations are combined, viz. the dynamical fluctuations of the many-

particle system and the static geometric fluctuations due to lattice percolation [9].

In equilibrium systems, their interplay gives rise to novel universality classes for the

thermal [10, 11, 12] and quantum [13, 14, 16, 15] phase transitions across the lattice

percolation threshold.

In this paper, we investigate the interplay between dynamical fluctuations and

geometric criticality in nonequilibrium many-particle systems. We focus on a partic-

ularly well-studied type of transitions, the so-called absorbing state transitions, that

separate active, fluctuating steady states from inactive (absorbing) states in which

fluctuations cease completely. The generic universality class for absorbing state tran-

sitions is directed percolation (DP) [17]. It is conjectured [18, 19] to be valid for all

absorbing state transitions with scalar order parameter and no extra symmetries or

conservation laws. In the presence of symmetries and/or conservation laws, other uni-

versality classes can be realized, such as the DPn class in systems with n symmetric

absorbing states [20].

For definiteness, we consider the contact process [21], a prototypical system in

the DP universality class. We show that the contact process on a randomly site or

bond diluted lattice has two different nonequilibrium phase transitions: (i) a generic

disordered DP transition at weak dilutions (below the lattice percolation threshold)

driven by the dynamic fluctuations of the contact process and (ii) the transition across

the lattice percolation threshold driven by the geometric criticality of the lattice. The

former transition has been investigated for a number of years [22, 23, 24, 25]; it has
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recently reattracted considerable attention because it is governed by an exotic infinite-

randomness fixed point [26, 27, 28, 29]. In contrast, the latter transition has received

much less attention.

Here, we develop a theory for the nonequilibrium transition across the lattice

percolation threshold by combining classical percolation theory with the properties

of the supercritical contact process on a finite-size cluster. We show that the criti-

cal point is characterized by ultraslow activated (exponential) dynamical scaling and

accompanied by strong Griffiths singularities. The scaling scenario is qualitatively

similar to the generic disordered DP transition, but with different critical exponent

values. To confirm the universality of this exotic scenario, we also investigate the

generalized contact process with n (symmetric) absorbing states [20]. This is a partic-

ularly interesting problem because the generic transition of the disordered generalized

contact process does not appear to be of infinite-randomness type [26, 27].

The paper is organized as follows. In Subec. 3.2, we introduce our models, the

simple and generalized contact processes on a randomly diluted lattice. We also dis-

cuss the phase diagrams. In Subec. 3.3 we briefly summarize the results of classical

percolation theory to the extent necessary for our purposes. Subsection 3.4 contains

the main part of the paper, the theory of the nonequilibrium transition across the

lattice percolation threshold. Subsection 3.5 is devoted to the question of the gener-

ality of the arising scaling scenario. We conclude in Subsec. 3.6. A short account of

part of this work has already been published in Ref. [30].

3.2. SIMPLE AND GENERALIZED CONTACT PROCESSES ON

DILUTED LATTICES

3.2.1. Contact process. The clean contact process [21] is a prototypical

system in the DP universality class. It is defined on a d-dimensional hypercubic

lattice. (We consider d ≥ 2 since we will be interested in diluting the lattice.) Each

lattice site r can be active (infected, state A) or inactive (healthy, state I). During the

time evolution of the contact process which is a continuous-time Markov process, each

active site becomes inactive at a rate µ (“healing”) while each inactive site becomes

active at a rate λm/(2d) where m is the number of active nearest neighbor sites

(“infection”). The infection rate λ and the healing rate µ are external parameters.

Their ratio controls the behavior of the contact process.

For λ � µ, healing dominates over infection, and the absorbing state without

any active sites is the only steady state of the system (inactive phase). For sufficiently

large infection rate λ, there is a steady state with a nonzero density of active sites
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(active phase). These two phases are separated by a nonequilibrium phase transition

in the DP universality class at a critical value (λ/µ)0
c of the ratio of the infection and

healing rates.

The basic observable in the contact process is the average density of active sites

at time t,

ρ(t) =
1

Ld

∑
r

〈nr(t)〉 (108)

where nr(t) = 1 if the site r is active at time t and nr(t) = 0 if it is inactive. L is the

linear system size, and 〈. . .〉 denotes the average over all realizations of the Markov

process. The longtime limit of this density (i.e., the steady state density)

ρstat = lim
t→∞

ρ(t) (109)

is the order parameter of the nonequilibrium phase transition.

3.2.2. Generalized contact process. Following Hinrichsen [20], we now

generalize the contact process by introducing n different inactive states Ik with k =

1 . . . n (n = 1 corresponds to the simple contact process). Here, k is sometimes called

the “color” label. The time evolution is again a continuous-time Markov process.

The first two rates are equivalent to those of the simple contact process: An active

site can decay into each of the inactive states Ik with rate µ/n, and a site in any of

the inactive states becomes active at a rate λm/(2d) with m the number of active

nearest-neighbor sites. To introduce competition between the different inactive states,

we define a third rate: If two neighboring sites are in different inactive states, each

can become active with a rate σ. This last rule prevents the boundaries between

domains of different inactive states from sticking together infinitely. Instead they can

separate, leaving active sites behind.

The properties of the clean generalized contact process have been studied in

some detail in the literature [20, 31]. If the boundary activation rate σ vanishes,

the behavior becomes identical to the simple contact process for all n. (This becomes

obvious by simply dropping the color label and treating all inactive sites as identical.)

For σ > 0, the system becomes “more active” than the simple contact process, and

the universality class changes. In one space dimension, a phase transition exists for

n = 1 (in the DP universality class) and for n = 2 (in the Z2-symmetric directed

percolation (DP2) class which coincides with the the parity-conserving (PC) class in
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one dimension [5]). For n ≥ 3 the system is always in the active phase, and no phase

transition exists at finite values of λ, µ and σ.

The generalized contact process in higher space dimensions presumably behaves

in an analogous fashion: There is a DP transition for n = 1 while the properties for

n > 1 are different. For sufficiently large n, the system is always active 15.

3.2.3. Lattice dilution. We now introduce quenched site dilution by

randomly removing each lattice site with probability p. (Bond dilution could be

introduced analogously.) As long as the vacancy concentration p remains below the

lattice percolation threshold pc, the lattice consists of an infinite connected cluster

of sites accompanied by a spectrum of finite-size clusters. In contrast, at dilutions

above pc, the lattice consists of disconnected finite-size clusters only.

Figure 3.1 schematically shows the resulting phase diagrams of the nonequilib-

rium process as a function of the infection rate λ and dilution p, keeping the healing

rate µ and the boundary activation rate σ, if any, constant. Depending on the prop-

erties of the clean undiluted system, there are two qualitatively different cases.

(a) If the undiluted system has a phase transition at a nonzero critical infection

rate λ0
c , the active phase survives for all vacancy concentrations below the percolation

threshold, p < pc. It even survives at the percolation threshold pc on the critical per-

colation cluster because it is connected, infinitely extended, and its fractal dimension

Df is larger than unity. The critical infection rate λc increases with increasing dilu-

tion p to compensate for the missing neighbors, reaching λ∗ at pc. The active phase

cannot exist for p > pc because the lattice consists of finite-size clusters only, and the

nonequilibrium process will eventually end up in one of the absorbing states on any

finite-size cluster. Thus, in case (a), our system features two nonequilibrium phase

transitions, (i) a generic (disordered) transition for dilutions p < pc, driven by the

dynamic fluctuations of the nonequilibrium process and (ii) the transition across the

lattice percolation threshold driven by the geometric criticality of the lattice. They

are separated by a multicritical point at (pc, λ∗) which was studied numerically in

Ref. [33].

(b) If the undiluted system is always active (as for the generalized contact pro-

cess with a sufficiently high number of inactive states), the phase diagram is simpler.

The active phase covers the entire region p ≤ pc for all λ > 0 (λ∗ is formally zero)

while the inactive phase exists in the region p > pc. There is no generic (disordered)

15For d = 2, n = 2, Hinrichsen [20] finds a mean-field transition while our own simulations suggest
that the system always active. Since this difference is of no importance for the present paper, it will
be addressed elsewhere.
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Figure 3.1. (Color online:) Schematic phase diagrams for the simple and generalized
contact processes on a diluted lattice in dimensions d ≥ 2 as a function of
dilution p and inverse infection rate λ−1 (healing and boundary activation
rates µ and σ are fixed). Case (a) applies to systems that display a
phase transition at λ0

c in the absence of dilution. There is a multicritical
point (MCP) at (pc, λ∗) separating the generic transition from the lattice
percolation transition. Case (b) is for systems that are always active in
the absence of dilution.

nonequilibrium phase transition, only the transition across the lattice percolation

threshold.

The focus of the present paper is the nonequilibrium phase transition across the

lattice percolation threshold that exists in both cases. In order to develop a theory

for this transition, we combine classical percolation theory with the properties of the

nonequilibrium process on a finite-size cluster. In the next section we therefore briefly

summarize key results of percolation theory.

3.3. CLASSICAL PERCOLATION THEORY

Consider a regular lattice in d dimensions. If each lattice site is removed with

probability p [34], an obvious question is whether or not the lattice is still connected
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in the sense that there is a cluster of connected (nearest neighbor) sites that spans

the entire system. This question defines the percolation problem (see Ref. [9] for an

introduction).

In the thermodynamic limit of infinite system volume, there is a sharp boundary

between the cases of a connected or disconnected lattice. If the vacancy concentration

p stays below the percolation threshold pc, an infinite cluster of connected sites exists

(with a probability of unity). For p > pc, an infinite cluster does not exist, instead,

the lattice consists of many disconnected finite-size clusters.

The behavior of the lattice for vacancy concentrations close to the percolation

threshold can be understood as a (geometric) continuous phase transition or critical

phenomenon. The order parameter is the probability P∞ of a site to belong to the

infinite connected percolation cluster. It is obviously zero in the disconnected phase

(p > pc) and nonzero in the percolating phase (p < pc). Close to pc it varies as

P∞ ∼ |p− pc|βc (p < pc) (110)

where βc is the order parameter critical exponent of classical percolation. Note that

we use a subscript c to distinguish quantities associated with the classical lattice

percolation problem from those of the nonequilibrium phase transitions discussed

later. In addition to the infinite cluster, we also need to characterize the finite clusters

on both sides of the transition. Their typical size, the correlation or connectedness

length ξc diverges as

ξc ∼ |p− pc|−νc (111)

with νc the correlation length exponent. The average mass Sc (number of sites) of a

finite cluster diverges with the susceptibility exponent γc according to

Sc ∼ |p− pc|−γc . (112)

The complete information about the percolation critical behavior is contained

in the cluster size distribution ns, i.e., the number of clusters with s sites excluding

the infinite cluster (normalized by the total number of lattice sites). Close to the

percolation threshold, it obeys the scaling form

ns(∆) = s−τcf (∆sσc) . (113)
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Here ∆ = p − pc, and τc and σc are critical exponents. The scaling function f(x) is

analytic for small x and has a single maximum at some xmax > 0. For large |x|, it

drops off rapidly

f(x) ∼ exp
[
−B1x

1/σc
]

(x > 0), (114)

f(x) ∼ exp
[
−
(
B2x

1/σc
)1−1/d

]
(x < 0), (115)

where B1 and B2 are constants of order unity. All classical percolation exponents are

determined by τc and σc including the correlation lengths exponent νc = (τc − 1)/(dσc),

the order parameter exponent βc = (τc − 2)/σc, and the susceptibility exponent

γc = (3− τc)/σc.
Right at the percolation threshold, the cluster size distribution does not contain

a characteristic scale. The structure of the critical percolation cluster is thus fractal

with the fractal dimension being given by Df = d/(τc − 1).

3.4. NONEQUILIBRIUM TRANSITION ACROSS THE LATTICE

PERCOLATION THRESHOLD

3.4.1. Single-cluster dynamics. To develop a theory of the nonequilibrium

phase transition across the lattice percolation threshold, we first study the nonequi-

librium process on a single connected finite-size cluster of s sites. For definiteness,

this section focuses on the simple contact process. The generalized contact process

will be considered in Subsec. 3.5.

The crucial observation is that on the percolation transition line (for λ > λ∗), the

contact process is supercritical, i.e., the cluster is locally in the active phase. The time

evolution of such a cluster, starting from a fully active lattice, therefore proceeds in

two stages: Initially, the density ρs of active sites decays rapidly towards a metastable

state (which corresponds to the steady state of the equivalent infinite system) with a

nonzero density of active sites and islands of the inactive phase of linear size ξcs (see

Fig. 3.2). This metastable state can then decay into the inactive (absorbing) state

only via a rare collective fluctuation involving all sites of the cluster. We thus expect

the long-time decay of the density to be of exponential form (suppressing subleading

pre-exponential factors),

ρs(t) ∼ exp[−t/ts(s)] , (116)
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Figure 3.2. (Color online:) Schematic of the metastable state of the supercritical
contact process on a single percolation cluster. A and I denote active and
inactive sites, and ξcs is the connected correlation length of the density
fluctuations on the cluster.

with a long lifetime ts that increases exponentially with the cluster size s

ts(s) = t0 exp[A(λ)s] (117)

for sufficiently large s. Here, t0 is some microscopic time scale.

The lifetime increases the faster with s the further the cluster is in the active

phase. This means, the prefactor A(λ) which plays the role of an inverse correlation

volume vanishes at the multicritical value λ∗ and monotonically increases with in-

creasing λ. Close to the multicritical point, the behavior of A(λ) can be inferred from

scaling. Since A(λ) has the dimension of an inverse volume, it varies as

A(λ) ∼ (λ− λ∗)ν∗Df (118)

where ν∗ is the correlation length exponent of the multicritical point and Df is the

(fractal) space dimensionality of the underlying cluster.

Note that (117) establishes an exponential relation between length and time

scales at the transition. Because the number of sites s of a percolation cluster is

related to its linear size Rs via s ∼ R
Df
s , eq. (117) implies

ln ts ∼ R
Df
s . (119)
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Figure 3.3. (Color online:) Contact process on one-dimensional clusters of size s,
starting from a fully active lattice at λ = 3.8, µ = 1 which is in the
active phase. (a) Double-logarithmic plot of density vs. time showing
the two-stage time-evolution via a metastable state. (b) Log-linear plot
demonstrating that the long-time decay is exponential. All data are av-
erages over 105 independent runs.

Thus, the dynamical scaling is activated rather than power-law with the tunneling

exponent being identical to the fractal dimension of the critical percolation cluster,

ψ = Df .

To confirm the above phenomenological arguments, we have performed extensive

Monte-Carlo simulations of the contact process on finite-size clusters using clean one-

dimensional and two-dimensional systems as well as diluted lattices. Our simulation

method is based on the algorithm by Dickman [35] and described in detail in Refs.

[28, 29].

A characteristic set of results is shown in Fig. 3.3. It shows the time evolution
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Figure 3.4. (Color online:) Lifetime ts as a function of cluster size s for different
values of the infection rate λ. The other parameters are as in Fig. 3.3. The
dashed lines are fits of the large-s behavior to the exponential dependence
(117). Inset: Correlation volume A−1 as a function of the distance from
bulk criticality. The dashed line is a power-law fit.

of the contact process on several one-dimensional clusters of different size s, starting

from a fully active lattice. The infection rate λ = 3.8 (we set µ = 1) puts the clusters

(locally) in the ordered phase, i.e., it is supercritical, since the critical value in one

dimension is λc = 3.298. All data are averages over 105 independent trials. The

double-logarithmic plot of density ρs vs. time t in Fig. 3.3a clearly shows the two-

stage time evolution consisting of a rapid initial decay (independent of cluster size)

towards a metastable state followed by a long-time decay towards the absorbing state

which becomes slower with increasing cluster size. Replotting the data in log-linear

form in Fig. 3.3b confirms that the long-time decay is exponential, as predicted in

(116).

The lifetime ts of the contact process on the cluster can be determined by fitting

the asymptotic part of the ρs(t) curve to (116). Figure 3.4 shows the lifetime as a

function of cluster size s for four different values of the infection rate λ. Clearly, for

sufficiently large clusters, the lifetime depends exponentially on the cluster size, as

predicted in (117). (The data for λ = 3.4 which is very close to the bulk critical point

of λc = 3.298 have not fully reached the asymptotic regime as can be seen from the

remaining slight curvature of the plot.) By fitting the large-s behavior of the lifetime

curves to the exponential law (117), we obtain an estimate of the inverse correlation
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volume A. The inset of Fig. 3.4 shows this correlation volume as a function of the

distance from the bulk critical point. In accordance with (118) it behaves as a power

law. The exponent value of approximately 0.95 is in reasonable agreement with the

prediction ν = 1.097 for our one-dimensional clusters.

We have performed analogous simulations for various sets of two-dimensional

clusters as well as finite-size diluted lattices. In all cases, the Monte-Carlo results

confirm the phenomenological theory summarized in eqs. (116), (117), and (118).

3.4.2. Steady-state density and density decay . We now consider the full

problem, the contact process on a diluted lattice close to the percolation threshold.

To obtain observables of the entire system, we must sum over all percolation clusters.

Let us start by analyzing static quantities such as the steady state density

ρst of active sites (the order parameter of the nonequilibrium transition) and the

spatial correlation length ξ⊥. Finite-size percolation clusters do not contribute to the

steady-state density because the contact process eventually decays into the absorbing

inactive state on any finite-size cluster. A steady-state density can thus exist only

on the infinite percolation cluster for p < pc. For λ > λ∗, the infinite cluster is

supercritical, i.e., a finite fraction of its sites is active. Thus, the total steady-state

density is proportional to the number of sites in the infinite cluster,

ρst ∼ P∞(p) ∼

{
|p− pc|βc (p < pc)

0 (p > pc)
. (120)

Consequently, the order parameter exponent β of the nonequilibrium transition is

identical to the corresponding exponent βc of the lattice percolation problem.

The (average) spatial correlation length ξ⊥ of the nonequilibrium process can

be found using a similar argument. On the one hand, the spatial correlations of the

contact process cannot extend beyond the connectedness length ξc of the underlying

diluted lattice because different percolation clusters are completely decoupled. This

implies ξ⊥ . ξc. On the other hand, for λ > λ∗, all sites on the same percolation

cluster are strongly correlated in space, implying ξ⊥ & ξc. We therefore conclude

ξ⊥ ≈ ξc , (121)

and the correlation length exponent ν⊥ is also identical to its lattice percolation

counterpart νc.

We now turn to the dynamics of the nonequilibrium transition across the per-

colation threshold. In order to find the time evolution of the total density of active
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sites (starting from a completely active lattice), we sum over all percolation clusters

by combining the cluster size distribution (113) with the single-cluster time evolution

(116). The total density is thus given by

ρ(t,∆) =

∫
ds s ns(∆) ρs(t)

∼
∫
ds s ns(∆) exp[−t/ts(s)] (122)

In the following, we evaluate this integral at the transition as well as in the active

and inactive phases.

Right at the percolation threshold, the scaling function in the cluster size dis-

tribution (113) is a constant, f(0), and (122) simplifies to

ρ(t, 0) ∼
∫
ds s1−τc exp[−(t/t0e

As)] . (123)

To estimate this integral, we note that only sufficiently large clusters, with a minimum

size of smin(t) = A−1 ln(t/t0), contribute to the total density at time t,

ρ(t, 0) ∼
∫ ∞
smin

ds s1−τc ∼ s2−τc
min . (124)

The leading long-time dependence of the total density right at the percolation thresh-

old thus takes the unusual logarithmic form

ρ(t, 0) ∼ [ln(t/t0)]−δ̄ , (125)

again reflecting the activated dynamical scaling, with the critical exponent given by

δ̄ = τc − 2 = βc/(νcDf ).

In the disconnected, inactive phase (p > pc) we need to use expression (114)

for the scaling function of the cluster size distribution. The resulting integral for the

time evolution of the density reads

ρ(t,∆) ∼
∫
dss1−τc exp[−B1s∆

1/σc − (t/t0e
As)]. (126)

For long times, the leading behavior of the integral can be calculated using the

saddle-point method. Minimizing the exponent of the integrand shows that the

main contribution at time t to the integral (126) comes from clusters of size s0 =

−A−1 ln[B1∆1/σct0/(At)]. Inserting this into the integrand results in a power-law
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density decay

ρ(t,∆) ∼ (t/t0)−d/z
′

(p > pc) . (127)

The nonuniversal exponent z′ is given by z′ = (Ad/B1)∆−1/σc ∼ ξ
Df
⊥ , i.e., it diverges

at the critical point p = pc.

In the percolating, active phase (p < pc), the infinite percolation cluster con-

tributes a nonzero steady state density ρst(∆) given by (120). However, the long-time

approach of the density towards this value is determined by the slow decay of the

metastable states of large finite-size percolation clusters. To estimate their contri-

bution, we must use the expression (115) for the scaling function of the cluster size

distribution. The resulting integral now reads

ρ(t,∆)− ρst(∆) ∼
∫
ds s1−τc exp

[
−(B2s|∆|1/σc)1−1/d

− (t/t0e
As)
]
. (128)

We again apply the saddle-point method to find the leading low-time behavior of this

integral. Minimizing the exponent shows the main contribution coming from clusters

of size s0 = −A−1 ln[B2|∆|1/σc(d− 1)/(Atd)]. By inserting this into the integrand, we

find a nonexponential density decay of the form

ρ(t,∆)− ρst(∆) ∼ e−[(d/z′′) ln(t/t0)]1−1/d

(p < pc) . (129)

Here, z′′ = (Ad/B2)|∆|−1/σc ∼ ξ
Df
⊥ is another nonuniversal exponent which diverges

at the critical point.

The slow nonexponential relaxation of the total density on both sides of the

actual transition as given in (127) and (129) is characteristic of a Griffiths phase

[36] in the contact process [37]. It is brought about by the competition between

the exponentially decreasing probability for finding a large percolation cluster off

criticality and the exponentially increasing lifetime of such a cluster. Note that time

t and spatial correlation length ξ⊥ enter the off-critical decay laws (127) and (129) in

terms of the combination ln(t/t0)/ξ
Df
⊥ again reflecting the activated character of the

dynamical scaling.

3.4.3. Spreading from a single seed. After having discussed the time

evolution of the density starting from a completely infected lattice, we now consider

the survival probability Ps(t) for runs starting from a single random seed site. To

estimate Ps(t), we note that the probability of a random seed site to belong to a
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cluster of size s is given by s ns(∆). The activity of the contact process is confined

to this seed cluster. Following the arguments leading to (116), the probability that

this cluster survives is proportional to exp(−t/ts). The average survival probability

at time t can thus be written as a sum over all possible seed clusters,

Ps(t,∆) ∼
∫
ds s ns(∆) exp[−t/ts(s)] . (130)

This is exactly the same integral as the one governing the density decay (122). We

conclude that the time dependence of the survival probability for runs starting from a

single seed is identical to the time evolution of the density when starting from a fully

infected lattice, as is expected for the contact process under very general conditions

(see, e.g., Ref. [5]).

To determine the (average) total number N(t) of active sites in a cloud spreading

from a single seed, we observe that a supercritical cloud initially grows ballistically.

This means its radius grows linearly with time, and the number of active sites follows

a power law. This ballistic growth stops when the number of active sites is of the

order of the cluster size s. After that, the number of active sites stays approximately

constant. The number Ns(t) of active sites on a percolation cluster of size s is thus

given by

Ns(t) ∼

{
(t/t0)Df (t < ti(s))

s (t > ti(s))
(131)

where ti(s) ∼ Rs(s) ∼ t0s
1/Df is the saturation time of this cluster. Note that Ns

decays to zero only after the much longer cluster lifetime ts(s) = t0 exp[A(λ)s] given

in (117).

We now average over all possible positions of the seed site as in (130). This

yields

N(t,∆) ∼
∫ ∞
smin

ds s ns(∆)Ns(t) (132)

with smin ∼ A−1 ln(t/t0). At criticality, this integral is easily evaluated, giving

N(t, 0) ∼ tDf (3−τc) = tγc/νc . (133)

The lower bound of the integral (i.e., the logarithmically slow long-time decay of

the clusters) produces a subleading correction only. Consequently, we arrive at the
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somewhat surprising conclusion that the initial spreading follows a power-law and

is thus much faster than the long-time density decay. In contrast, at the infinite-

randomness critical point governing the generic (p < pc) transition, both the initial

spreading and the long-time decay follow logarithmic laws [26, 27, 28, 29]. Note that

a similar situation occurs at the percolation quantum phase transition in the diluted

transverse-field Ising model [13] where the temperature-dependence of the correlation

length does not follow the naively expected logarithmic law.

3.4.4. External source field. In this subsection we discuss the effects of

spontaneous activity creation on our nonequilibrium phase transition. Specifically,

in addition to healing and infection, we now consider a third process by which an

inactive site can spontaneously turn into an active site at rate h. This rate plays the

role of an external “source field” conjugate to the order parameter.

To find the steady state density in the presence of such a source field, we first

consider a single percolation cluster. As before, we are interested in the supercritical

regime λ > λ∗. At any given time t, a cluster of size s will be active (on average), if

at least one of the s sites has spontaneously become active within one lifetime ts(s) =

t0e
As before t, i.e., in the interval [t−ts(s), t]. For a small external field h, the average

number of active sites created on a cluster of size s is Ms(h) = hsts(s) = hst0e
As.

This linear response expression is valid as long as Ms � s. The probability ws(h) for

a cluster of size s to be active in the steady state is thus given by

ws(h) ≈

{
Ms(h) (Ms(h) < 1)

1 (Ms(h) > 1)
. (134)

Turning to the full lattice, the total steady state density is obtained by summing

over all clusters

ρst(h,∆) ∼
∫
ds s ns(∆) min[1,Ms(h)] . (135)

This integral can be evaluated along the same lines as the corresponding integral

(122) for the time-evolution of the zero-field density. For small fields h, we obtain

ρst(h, 0) ∼ [ln(h0/h)]−δ̄ (p = pc), (136)

ρst(h,∆) ∼ (h/h0)d/z
′

(p > pc), (137)

δρst(h,∆) ∼ e[(d/z′′) ln(h/h0)]1−1/d

(p < pc) , (138)
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where δρst(h,∆) = ρst(h,∆) − ρst(0,∆) is the excess density due to the field in the

active phase and h0 = 1/t0. At criticality, p = pc, the relation between density ρst

and field h is logarithmic because the field represents a rate (inverse time) and the

dynamical scaling is activated. Off criticality, we find strong Griffiths singularities

analogous to those in the time-dependence of the density. The exponents z′ and z′′

take the same values as calculated after eqs. (127) and (129), respectively.

3.4.5. Scaling theory. In Subsubsecs 3.4.2 and 3.4.4, we have determined

the critical behavior of the density of active sites by explicitly averaging the single

cluster dynamics over all percolation clusters. The same results can also be obtained

from writing down a general scaling theory of the density for the case of activated

dynamical scaling [28, 29].

According to (120), in the active phase, the density is proportional to the number

of sites in the infinite percolation cluster. Its scale dimension must therefore be

identical to the scale dimension of P∞ which is βc/νc. Time must enter the theory

via the scaling combination ln(t/t0)bψ with the tunneling exponent given by ψ = Df

and b an arbitrary length scale factor. This scaling combination reflects the activated

dynamical scaling, i.e., the exponential relation (119) between length and time scales.

Finally, the source field h, being a rate, scales like inverse time. This leads to the

following scaling theory of the density,

ρ[∆, ln(t/t0), ln(h0/h)] =

= bβc/νcρ[∆b−1/νc , ln(t/t0)bψ, ln(h0/h)bψ] (139)

This scaling theory is compatible with all our explicit results which can be rederived

by setting the arbitrary scale factor b to the appropriate values.

3.5. GENERALITY OF THE ACTIVATED SCALING SCENARIO

In Subsec 3.4, we have developed a theory for the nonequilibrium phase transi-

tion of the simple contact process across the lattice percolation threshold and found it

to be characterized by unconventional activated dynamical scaling. In the present sec-

tion, we investigate how general this exotic behavior is for absorbing state transitions

by considering the generalized contact process with several absorbing states.

This is a particularly interesting question because the generic transitions (p <

pc) of the diluted simple and generalized contact processes appear to behave differ-

ently. The generic transition in the simple contact process has been shown to be
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Figure 3.5. (Color online:) Schematic of the metastable state of the supercritical
generalized contact process with two inactive states on a single percolation
cluster. A denotes the active state, and I1 and I2 are the inactive states.
ξcs is the connected correlation length of the density fluctuations on the
cluster.

of infinite-randomness type with activated dynamical scaling using both a strong-

disorder renormalization group [26, 27] and Monte-Carlo simulations [28, 29]. In

contrast, the strong-disorder renormalization group treatment of the disordered gen-

eralized contact process [27] suggests more conventional behavior, even though the

ultimate fate of the transition could not be determined.

To address the same question for our transition across the lattice percolation

threshold, we note that any difference between the simple and the generalized contact

processes must stem from the single-cluster dynamics because the underlying lattice

is identical. In the following we therefore first give heuristic arguments for the single-

cluster dynamics of the supercritical generalized contact process and then verify them

by Monte-Carlo simulations.

If the percolation cluster is locally in the active phase (λ > λ∗), the density time

evolution, starting from a fully active lattice, proceeds in two stages, analogously to

the simple contact process. There is a rapid initial decay to a metastable state

with a nonzero density of active sites and finite-size islands of each of the inactive

phases (see Fig. 3.5). For this metastable state to decay into one of the n absorbing

configurations, all sites must go into the same inactive state which requires a rare

large density fluctuation. Let us assume for definiteness that the decay is into the

I1 state. The main difference to the simple contact process considered in Subsubsec.

3.4.1 is that sites that are in inactive states I2 . . . In cannot directly decay into I1.
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This means, each of the inactive islands in states I2 . . . In first needs to be “eaten”

by the active regions before the entire cluster can decay into the I1 state. This can

only happen via infection from the boundary of the inactive island and is thus a

slow process. However, since the characteristic size of the inactive islands in the

metastable state is finite (it is given by the connected density correlation length ξcs

on the cluster), this process happens with a nonzero rate that is independent of the

size s of the underlying percolation cluster (for sufficiently large s).

The decay of the metastable state into one of the absorbing states is therefore

brought about by the rare collective decay of a large number of independent corre-

lation volumes just as in the simple contact process. As a result, the lifetime ts(s)

depends exponentially on the number of involved correlation volumes, i.e., it depends

exponentially on the cluster size s. We thus find that the long-time density decay of

the generalized contact process on a single large percolation cluster is governed by

the same equations (116) and (117) as the decay of the simple contact process.

To verify these phenomenological arguments, we have performed large-scale

Monte-Carlo simulations of the generalized contact process with two and three ab-

sorbing states on clean and disordered one-dimensional and two-dimensional lattices.

In all cases, we have first performed bulk simulations (spreading from a single seed)

to find the bulk critical point. An example is shown in Fig. 3.6, details of the bulk

critical behavior will be reported elsewhere.

After having determined the critical point, if any, we have selected several pa-

rameter sets in the bulk active phase and studied the long-time density decay of the

generalized contact process on finite size clusters. As expected, the decay proceeds

via the two stages discussed above. As in Subsubsec. 3.4.1, we extract the lifetime

ts from the slow exponential long-time part of the decay. Two characteristic sets of

results are shown in Fig. 3.7. The figure confirms that the lifetime of the generalized

contact process on a finite-size cluster depends exponentially on the number of sites

in the cluster, as given in (117). We have obtained analogous results for all cases

investigated, verifying the phenomenological theory given above.

Because the long-time dynamics of the generalized contact process on a single

supercritical cluster follows the same behavior (116) and (117) as that of the simple

contact process, we conclude that its nonequilibrium transition across the percolation

threshold will also be governed by the theory developed on Subsec. 3.4. In other words,
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Figure 3.6. (Color online:) Bulk phase transition of the generalized contact process
with two absorbing states in d = 1 measured via spreading from a single
seed: Number N of active sites vs. time t for different healing rates µ.
The infection and boundary activation rates are fixed, λ = σ = 1, and the
data are averages over 106 runs. The critical point appears to be close to
µ = 0.628 in agreement with [20].

the lattice percolation transitions of the simple and generalized contact processes

belong to the same universality class, irrespective of the number n of absorbing states.

3.6. CONCLUSIONS

In this final subsection of the paper, we first summarize our results, discuss

their generality, and relate them to the behavior of certain quantum phase transi-

tions on diluted lattices. We then compare the recently found infinite-randomness
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Figure 3.7. (Color online:) Lifetime ts as a function of cluster size s for the generalized
contact process with two inactive states at different values of the healing
rate µ. The infection and boundary activation rates are fixed, λ = σ = 1,
and the data are averages over 106 runs. (a) d = 1 where the bulk system
has a transition, see Fig. 3.6. (b) d = 2, where we do not find a bulk
transition because the system is always active [32]. The dashed lines are
fits of the large-s behaviors to the exponential law (117).

critical point at the generic transition (p < pc) to the behavior at our lattice perco-

lation transition. Finally, we relate our findings to a general classification of phase

transitions with quenched spatial disorder [38].

To summarize, we have investigated absorbing state phase transitions on ran-

domly diluted lattices, taking the simple and generalized contact processes as ex-

amples. We have focused on the nonequilibrium phase transition across the lattice

percolation threshold and shown that it can be understood by combining the time evo-

lution of the supercritical nonequilibrium process on a finite-size cluster with results

from classical lattice percolation theory. The interplay between geometric criticality
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Exponent d = 2 d = 3
β = βc 5/36 0.417
ν = νc 4/3 0.875
ψ = Df = d− βc/νc 91/48 2.523
δ̄ = βc/(νcDf ) 5/91 0.188

Table 3.1. Critical exponents of the nonequilibrium phase transition across the per-
colation threshold in two and three space dimensions.

and dynamic fluctuations at this transition leads to a novel universality class. It is

characterized by ultraslow activated (i.e., exponential) rather than power-law dynam-

ical scaling and accompanied by a nonexponential decay in the Griffiths regions. All

critical exponents of the nonequilibrium phase transition can be expressed in terms

of the classical lattice percolation exponents. Their values are known exactly in two

space dimensions and with good numerical accuracy in three space dimensions; they

are summarized in Table 3.1.

Thus, our transition in d = 2 provides one of the few examples of a nonequilib-

rium phase transition with exactly known critical exponents.

The logarithmically slow dynamics (125), (136) at criticality together with the

small value of the exponent δ̄ make a numerical verification of our theory by sim-

ulations of the full diluted lattice a very costly proposition. The results of recent

Monte-Carlo simulations in two dimensions [29] at p = pc are compatible with our

theory but not yet sufficient to be considered a quantitative verification. This remains

a task for the future.

The unconventional critical behavior of our nonequilibrium phase transition at

p = pc is the direct result of combining the power-law spectrum (113) of cluster sizes

with the exponential relation (119) between length and time scales. We therefore ex-

pect other equilibrium or nonequilibrium systems that share these two characteristics

to display similar critical behavior at the lattice percolation transition. One proto-

typical example is the transverse-field Ising model on a diluted lattice. In this system,

the quantum-mechanical energy gap (which represents an inverse time) of a cluster

decreases exponentially with the cluster size. Consequently, the critical behavior of

the diluted transverse-field Ising model across the lattice percolation threshold is very

similar to the one found in this paper [13]. Other candidates are magnetic quantum

phase transitions in metallic systems or certain superconductor-metal quantum phase
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transitions [39, 40, 41, 42], even though a pure percolation scenario may be hard to

realize in metallic systems.

Our work has focused on the nonequilibrium phase transition across the lattice

percolation threshold. It is instructive to compare its critical behavior to that of the

generic transition occurring for p < pc (see Fig. 3.1). Hooyberghs et al. [26, 27] applied

a strong disorder renormalization group to the one-dimensional disordered contact

process. They found an exotic infinite-randomness critical point in the universality

class of the random-transverse field Ising model (which likely governs the transition

for any disorder strength [43]). The same analogy is expected to hold in two space

dimensions. Recently, these predictions were confirmed by large scale Monte-Carlo

simulations [28, 29]. Our nonequilibrium transition across the lattice percolation

threshold shares some characteristics with these infinite-randomness critical points,

in particular, the activated dynamical scaling which leads to a logarithmically slow

density decay at criticality.

However, the generic and percolation transitions are in different universality

classes with different critical exponent values. Moreover, the initial spreading from

a single seed is qualitatively different (logarithmically slow at the generic infinite-

randomness critical point but of power-law type at our percolation transition). Fi-

nally, at the percolation transition the simple and generalized contact processes are

in the same universality class while this does not seem to be the case for the generic

transition [27].

The results of this paper are in agreement with a recent general classification of

phase transitions with quenched spatial disorder and short-range interactions [39, 38].

It is based on the effective dimensionality deff of the droplets or clusters. Three classes

need to be distinguished: (a) If the clusters are below the lower critical dimension of

the problem, deff < d−c , the critical behavior is conventional (power-law scaling and

exponentially weak Griffiths effects). This is the case for most classical equilibrium

transitions. (b) If deff = d−c , the dynamical scaling is activated and accompanied

by strong Griffiths effects. This case is realized at the nonequilibrium transition

considered here as well as the generic transition of the disordered contact process.

It also applies to various quantum phase transitions [44, 13, 40]. (c) If deff > d−c , a

single supercritical cluster can undergo the phase transition independently of the bulk

system. This leads to the smearing of the global phase transition; it occurs, e.g., in

dissipative quantum magnets [45, 46] or in the contact process with extended defects

[47].
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In conclusion, our work demonstrates that absorbing state transitions on per-

colating lattices display unusual behavior. Interestingly, experimental verifications of

the theoretically predicted critical behavior at (clean) absorbing state transitions are

extremely rare [48]. For instance, to the best of our knowledge, the only complete

verification of directed percolation scaling was found very recently in the transition

between two turbulent states in a liquid crystal [49]. Our theory suggests that un-

conventional disorder effects may be responsible for the surprising absence of directed

percolation scaling in at least some of the experiments.

Acknowledgements

This work has been supported in part by the NSF under grant no. DMR-0339147,

by Research Corporation, and by the University of Missouri Research Board. We

gratefully acknowledge discussions with J. Hoyos as well the hospitality of the Max-

Planck-Institute for Physics of Complex Systems during part of this research.



65

[1] T. M. Liggett, Interacting Particle Systems Springer, Berlin, 1985.

[2] V. P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 20, 113 1994.

[3] B. Schmittmann and R. K. P. Zia, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz Academic, New York, 1995, Vol. 17, p.

1.

[4] J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models

Cambridge University Press, Cambridge, England, 1999.

[5] H. Hinrichsen, Adv. Phys. 49, 815 2000.

[6] G. Odor, Rev. Mod. Phys. 76, 663 2004.

[7] S. Lbeck, Int. J. Mod. Phys. B 18, 3977 2004.

[8] U. C. Tuber, M. Howard, and B. P. Vollmayr-Lee, J. Phys. A 38, R79 2005.

[9] D. Stauffer and A. Aharony, Introduction to Percolation Theory CRC Press,

Boca Raton, FL, 1991.

[10] T. K. Bergstresser, J. Phys. C 10, 3381 1977.

[11] M. J. Stephen and G. S. Grest, Phys. Rev. Lett. 38, 567 1977.

[12] Y. Gefen, B. B. Mandelbrot, and A. Aharony, Phys. Rev. Lett. 45, 855 1980.

[13] T. Senthil and S. Sachdev, Phys. Rev. Lett. 77, 5292 1996.

[14] A. W. Sandvik, Phys. Rev. Lett. 89, 177201 2002.

[15] L. Wang and A. W. Sandvik, Phys. Rev. Lett. 97, 117204 2006.

[16] T. Vojta and J. Schmalian, Phys. Rev. Lett. 95, 237206 2005.

[17] P. Grassberger and A. de la Torre, Ann. Phys. N.Y. 122, 373 1979.

[18] H. K. Janssen, Z. Phys. B: Condens. Matter 42, 151 1981.

[19] P. Grassberger, Z. Phys. B: Condens. Matter 47, 365 1982.

[20] H. Hinrichsen, Phys. Rev. E 55, 219 1997.

[21] T. E. Harris, Ann. Probab. 2, 969 1974.



66

[22] W. Kinzel, Z. Phys. B: Condens. Matter 58, 229 1985.

[23] A. J. Noest, Phys. Rev. Lett. 57, 90 1986.

[24] A. G. Moreira and R. Dickman, Phys. Rev. E 54, R3090 1996.

[25] H. K. Janssen, Phys. Rev. E 55, 6253 1997.

[26] J. Hooyberghs, F. Igloi, and C. Vanderzande, Phys. Rev. Lett. 90, 100601 2003.

[27] J. Hooyberghs, F. Igloi, and C. Vanderzande, Phys. Rev. E 69, 066140 2004.

[28] T. Vojta and M. Dickison, Phys. Rev. E 72, 036126 2005.

[29] T. Vojta, A. Farquhar, and J. Mast, Phys. Rev. E 79, 011111 2009.

[30] T. Vojta and M. Y. Lee, Phys. Rev. Lett. 96, 035701 2006.

[31] J. Hooyberghs, E. Carlon, and C. Vanderzande, Phys. Rev. E 64, 036124 2001.

[32] For d=2,n=2, Hinrichsen [20] finds a mean-field transition while our own sim-

ulations suggest that the system is always active. Since this difference is of no

importance for the present paper, it will be addressed elsewhere.

[33] S. R. Dahmen, L. Sittler, and H. Hinrichsen, J. Stat. Mech. Theor. Exp. 2007,

P01011.

[34] We define p as the fraction of sites removed rather than the fraction of sites

present.

[35] R. Dickman, Phys. Rev. E 60, R2441 1999.

[36] R. B. Griffiths, Phys. Rev. Lett. 23, 17 1969.

[37] A. J. Noest, Phys. Rev. B 38, 2715 1988.

[38] T. Vojta, J. Phys. A 39, R143 2006.

[39] T. Vojta and J. Schmalian, Phys. Rev. B 72, 045438 2005.

[40] J. A. Hoyos, C. Kotabage, and T. Vojta, Phys. Rev. Lett. 99, 230601 2007.

[41] A. Del Maestro, B. Rosenow, M. Mller, and S. Sachdev, Phys. Rev. Lett. 101,

035701 2008.



67

[42] T. Vojta, C. Kotabage, and J. A. Hoyos, Phys. Rev. B 79, 024401 2009.

[43] J. A. Hoyos, Phys. Rev. E 78, 032101 2008.

[44] D. S. Fisher, Phys. Rev. Lett. 69, 534 1992.

[45] T. Vojta, Phys. Rev. Lett. 90, 107202 2003.

[46] J. A. Hoyos and T. Vojta, Phys. Rev. Lett. 100, 240601 2008.

[47] T. Vojta, Phys. Rev. E 70, 026108 2004.

[48] H. Hinrichsen, Braz. J. Phys. 30, 69 2000.

[49] K. A. Takeuchi, M. Kuroda, H. Chate, and M. Sano, Phys. Rev. Lett. 99,

234503 2007.



68

4. PHASE TRANSITIONS OF THE GENERALIZED CONTACT

PROCESS WITH TWO ABSORBING STATES

Man Young Lee and Thomas Vojta

Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA

Abstract16

We investigate the generalized contact process with two absorbing states in one

space dimension by means of large-scale Monte-Carlo simulations. Treating the cre-

ation rate of active sites between inactive domains as an independent parameter leads

to a rich phase diagram. In addition to the conventional active and inactive phases we

find a parameter region where the simple contact process is inactive, but an infinites-

imal creation rate at the boundary between inactive domains is sufficient to take the

system into the active phase. Thus, the generalized contact process has two different

phase transition lines. The point separating them shares some characteristics with a

multicritical point. We also study in detail the critical behaviors of these transitions

and their universality.

16All of this section is reproduced from Physical Review E 81 061128 (2010) and then reformatted
and renumbered.
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4.1. INTRODUCTION

Many systems in physics, chemistry, and biology are far from thermal equilib-

rium, even if they are in time-independent steady states. In recent years, continuous

phase transitions between different nonequilibrium steady states have attracted lots

of attention. Just as in equilibrium, these transitions are characterized by large-scale

fluctuations and collective behavior over large distances and long times. Examples

can be found, e.g., in surface growth, granular flow, chemical reactions, population

dynamics, and even in traffic jams [1, 2, 3, 4, 5, 6, 7].

Continuous nonequilibrium phase transitions can be divided into different uni-

versality classes according to their critical behavior, and considerable effort has been

devoted to categorizing the variety of known transitions. A well-studied type of

nonequilibrium phase transitions separates fluctuating (active) steady states from

absorbing (inactive) states where fluctuations stop completely. The generic univer-

sality class for these so-called absorbing state transitions is directed percolation (DP)

[8]. More specifically, it was conjectured by Janssen and Grassberger [9, 10] that all

absorbing state transitions with a scalar order parameter and short-range interactions

belong to this class as long as there are no extra symmetries or conservation laws.

While nonequilibrium transitions in the DP universality class are ubiquitous in both

theory and computer simulations, experimental verifications were only found rather

recently in ferrofluidic spikes [11] and in the transition between two turbulent states

in a liquid crystal [12].

Absorbing state transitions in universality classes different from DP can occur

in the presence of additional symmetries or conservation laws. Hinrichsen [13] in-

troduced nonequilibrium lattice models with n ≥ 2 absorbing states. In the case of

two symmetric absorbing states (n = 2), he found the transition to be in a new uni-

versality class, the Z2-symmetric directed percolation class (DP2). If the symmetry

between the absorbing states is broken, the critical behavior reverts back to DP. In

one dimension, the DP2 universality class coincides [4] with the parity-conserving PC

class [14] which is observed, e.g., in the branching-annihilating random walk with an

even number of offspring (BARWE) [15].

In this paper, we revisit one of the stochastic lattice models introduced in Ref.

[13], the generalized contact process with two absorbing states in one space dimen-

sion. Compared to the simple contact process [16], this model contains an additional

dynamical process, viz., the creation of active sites at the boundary between domains
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of different inactive states. By treating the rate for this process as an independent

parameter we uncover a rich phase diagram with two different types of phase transi-

tions, separated by a special point that shares many characteristics with a multicrit-

ical point. We perform large-scale Monte-Carlo simulations of this model to study in

detail the critical behavior of these transitions.

Our paper is organized as follows. We introduce the generalized contact process

with several absorbing states in Subsec. 4.2. In Subsec. 4.3, we summarize the mean-

field theory for this system. Subsec. 4.4 is devoted to the results and interpretation

of our Monte-Carlo simulations. We conclude in Subsec. 4.5.

4.2. THE GENERALIZED CONTACT PROCESS WITH SEVERAL

ABSORBING STATES

The contact process [16] is a paradigmatic model in the DP universality class.

It is defined on a d-dimensional hypercubic lattice. Each lattice site r can be in one

of two states, namely A, the active (infected) state or I, the inactive (healthy) state.

Over the course of the time evolution, active sites can infect their nearest neighbors,

or they can become inactive spontaneously. More precisely, the contact process is

a continuous-time Markov process during which active sites turn inactive at a rate

µ, while inactive sites become infected at a rate λm/(2d) where m is the number of

active nearest neighbors. The healing rate µ and the infection rate λ are external

parameters whose ratio determines the behavior of the system.

If µ � λ, healing dominates over infection. All infected sites will eventually

become inactive, leaving the absorbing state without any active sites the only steady

state. Thus, the system is in the inactive phase. In the opposite limit, λ � µ, the

infection survives for infinite times, i.e., there is a steady state with a nonzero density

of active sites. This is the active phase. The nonequilibrium phase transition between

these two phases at a critical value of the ratio λ/µ is in the DP universality class.

In 1997, Hinrichsen [13] introduced a generalization of the contact process. Each

lattice site can now be in one of n+1 states, the active state A or one of the n different

inactive states Ik (k = 1 . . . n). k is sometimes called the “color” index. The dynamics

of the generalized contact process is defined via the following rates for transitions of
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pairs of nearest-neighbor sites,

w(AA→ AIk) = w(AA→ IkA) = µ̄/n , (140)

w(AIk → IkIk) = w(IkA→ IkIk) = µk , (141)

w(AIk → AA) = w(IkA→ AA) = λ , (142)

w(IkIl → IkA) = w(IkIl → AIl) = σ , (143)

with k, l = 1 . . . n and k 6= l. All other rates vanish. We are mostly interested in the

fully symmetric case, µk ≡ µ for all k. For n = 1 and µ̄ = µ, the so defined generalized

contact process coincides with the simple contact process discussed above. One of

the rates µ̄, µ, λ, and σ can be set to unity without loss of generality, thereby fixing

the unit of time. We choose λ = 1 in the following. Moreover, to keep the parameter

space manageable, we focus on the case µ̄ = µ in the bulk of the paper. The changes

for µ̄ 6= µ will be briefly discussed in Subsec. 4.5.

The process (143) prevents inactive domains of different color (different k) to

stick together indefinitely. They can separate, leaving active sites in between. Thus,

this transition allows the domain walls to move through space. It is important to

realize that without the process (143), i.e., for σ = 0, the color of the inactive sites

becomes unimportant, and all Ik can be identified. Consequently, for σ = 0, the

dynamics of the generalized contact process reduces to that of the simple contact

process for all values of n.

Hinrichsen [13] studied the one-dimensional generalized contact process by means

of Monte-Carlo simulations, focusing on the case σ = λ = 1. For n = 2, he found a

nonequilibrium phase transition at a finite value of µ which separates the active and

inactive phases. The critical behavior of this transition coincides with that of the PC

universality class. For n ≥ 3, he found the model to be always in the active phase. The

Monte-Carlo simulations were later confirmed by means of a non-hermitian density-

matrix renormalization group study [17].

Motivated by a seeming discrepancy between these results and simulations that

we performed during our study of absorbing state transitions on a percolating lattice

[18], we revisit the one-dimensional generalized contact process with two inactive

states. In contrast to the earlier works we treat the rate σ of the process (143) as an

independent parameter (rather than fixing it at σ = λ = 1).

4.3. MEAN-FIELD THEORY
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To get a rough overview over the behavior of the generalized contact process with

two inactive states, we first perform a mean-field analysis. Denoting the probabilities

for a site to be in state A, I1, and I2 with PA, P1, and P2, respectively, the mean-field

equations read:

dPA/dt = (1− µ)PA − P 2
A + 2σP1P2 , (144)

dP1/dt = µPA/2− PAP1 − σP1P2 , (145)

dP2/dt = µPA/2− PAP2 − σP1P2 . (146)

Let us begin by discussing the steady states which are given by the fixed points of the

mean-field equations. There are two trivial, inactive fixed points P1 = 1, PA = P2 = 0

and P2 = 1, PA = P1 = 0. They exist for all values of the parameters µ and σ and

correspond to the two absorbing states. In the case of σ = 0, these fixed points are

unstable for µ < 1 and stable for µ > 1. In contrast, for σ > 0, they are always

unstable.

The active fixed point is given by P1 = P2 and fulfills the equation

0 = (1− µ)PA − P 2
A + σ(1− PA)2/2 . (147)

For σ = 0, this equation reduces to the well-known mean-field equation of the simple

contact process, 0 = (1− µ)PA − P 2
A with the solution PA = 1− µ for µ < 1. Thus,

for σ = 0, the nonequilibrium phase transition of the generalized contact process

occurs at µ = µcpc = 1. This means, it coincides with the transition of the simple

contact process, in agreement with the general arguments given in Subsec. 4.2. In

the general case, σ 6= 0, the steady state density of active sites, PA, is given by the

positive solution of

PA =
1

2− σ

(
1− µ− σ ±

√
µ2 − 2µ+ 1 + 2µσ

)
. (148)

We are particularly interested in the behavior of PA for small σ. As long as µ <

µcpc = 1 (i.e., in the active phase of the simple contact process), a small, nonzero σ

only provides a subleading correction to PA. At µ = µcpc = 1, the density of active

sites vanishes as PA ∼
√
σ with σ → 0. Finally, for µ > µcpc = 1, the density of active

sites vanishes as PA ∼ σ/(µ− 1).

We thus conclude that within mean-field theory, the generalized contact process

with two inactive states is in the active phase for any nonzero σ. This agrees with

older mean-field results but disagrees with more sophisticated methods which predict
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a nonequilibrium transition at a finite value of µ [13, 17]. The mean-field dynamics

can be worked out in a similar fashion. We find that the approach to the stationary

state is exponential in time anywhere in parameter space except for the critical point

of the simple contact process at µ = 1, σ = 0. However, it is known that mean-

field theory does not reflect the correct long-time dynamics of the generalized contact

process which is of power-law type [13]. Therefore, we do not analyze the mean-field

dynamics in detail.

4.4. MONTE CARLO SIMULATIONS

4.4.1. Method and overview. We now turn to the main part of the paper,

viz., large-scale Monte-Carlo simulations of the one-dimensional generalized contact

process with two inactive states. We perform two different types of calculations: (i)

decay runs and (ii) spreading runs. Decay runs start from a completely active lattice;

we monitor the time evolution of the density ρ(t) of active sites as well as the densities

ρ1(t) and ρ2(t) of sites in inactive states I1 and I2, respectively. Spreading simulations

start from a single active (seed) site embedded in a system of sites in state I1. (From a

domain wall point of view, the spreading runs are therefore in the even parity sector.)

Here we measure the survival probability Ps(t), the number of sites in the active cloud

Ns(t) and the mean-square radius of this cloud, R2(t).

In each case, the simulation proceeds as a sequence of events. In each event,

a pair of nearest-neighbor sites is randomly selected from the active region. For

the spreading simulations, the active region initially consists of the seed site and its

neighbors; it is updated in the course of the simulation according to the actual size of

the active cluster. For the decay runs, the active region comprises the entire sample.

The selected pair than undergoes one of the possible transitions according to eqs.

(140) to (143) with probability τw. Here the time step τ is a constant which we have

fixed at 1/2. The time increment associated with the event is τ/Npair where Npair is

the number of nearest-neighbor pairs in the active region.

Using this method we studied systems with sizes up to L = 106 lattice sites and

times up to tmax = 108, exploring the parameter space 0 ≤ µ ≤ 1 and 0 ≤ σ ≤ 1.

The σ−µ phase diagram resulting from our simulations is displayed in Fig. 4.1. This

phase diagram shows that the crossover from DP critical behavior at σ = 0 to DP2 (or,

equivalently, PC) critical behavior at σ > 0 occurs in an unusual fashion. The phase

boundary σc(µ) between the active and inactive phases does not terminate at the

critical point of the simple contact process located at (µ, σ) = (µcpc , 0) ≈ (0.30325, 0).

Instead, it ends at the point (µ, σ) = (µ∗, 0) ≈ (0.552, 0). In the parameter range
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Figure 4.1. (Color online) Phase diagram of the 1D generalized contact process as
function of the healing rate µ and the boundary rate σ. A line of DP2 (PC)
transitions (blue dashed line) separates the active and inactive phases. For
σ → 0, this line does not terminate in the simple contact process critical
point at µcpc ≈ 0.30325 and but at µ∗ ≈ 0.552. For µcpc < µ < µ∗, the
system is inactive at σ = 0 (thick solid red line), but an infinitesimal σ
takes it to the active phase. Inset: Close to the endpoint at µ∗, the phase
boundary behaves roughly as σc ∼ (µ− µ∗)2.

µcpc < µ < µ∗, the system is inactive at σ = 0, but an infinitesimally small nonzero σ

takes it to the active phase.

Thus, the one-dimensional generalized contact process with two inactive states

has two types of phase transitions, (i) the generic transition occurring at µ > µ∗ and

σ = σc(µ) > 0 (marked by the dashed blue line and arrows in Fig. 4.1) and (ii)

the transition occurring for µcpc < µ < µ∗ as σ approaches zero (solid red line and

arrows). We note in passing that our critical healing rate for σ = 1 is µc = 0.628(1),

in agreement with Ref. [13]

In the following subsections we first discuss in detail the simulations that lead

to this phase diagram, and then we present results on the critical behavior of both

transitions as well as special point (µ∗, 0) ≈ (0.552, 0) that separates them.

4.4.2. Establishing the phase diagram. We first performed a number

of spreading simulations at σ = 0 and various µ for maximum times up to 3 × 104.

The resulting number Ns(t) of active sites in the cluster is shown in Fig. 4.2. The

figure demonstrates that the transition between the active and inactive phases occurs

at µ = 0.30325(25). A fit of the critical curve to Ns ∼ tΘcp yields Θcp = 0.315(5).
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Figure 4.2. (Color online) Spreading simulations at σ = 0: Number Ns of active sites
as a function of time t. The solid line for µ = 0.30325 represents a fit
to Ns ∼ tΘcp yielding Θcp = 0.315(5). The data are averages over 25000
runs.

As expected from the general arguments in Subsec. 4.2, both the critical healing

rate and the initial slip exponent Θcp agree very well with the results of the simple

contact process (see, e.g., Ref. [19] for accurate estimates of the DP exponents).

Thus, at σ = 0, the generalized contact process undergoes a transition in the directed

percolation universality class at µ = µcpc = 0.30325(25).

We now turn to nonzero σ. Because the domain boundary process (143) creates

extra active sites, it is clear that the phase boundary between the active and inactive

phases has to shift to larger healing rates µ with increasing σ. In the simplest crossover

scenario, the phase boundary σc(µ) would behave as σc ∼ (µ − µcpc )1/φ where φ is a

crossover exponent. To test this scenario, we performed spreading simulations for

times up to 107 at several fixed µ > µcpc in which we vary σ to locate the transition.

Examples of the resulting Ns(t) curves for several σ at µ = 0.428 and µ = 0.6 are

shown in Fig. 4.3. The set of curves for µ = 0.6 (Fig. 4.3b) behaves as expected:

Initially, Ns(t) follows the behavior of the simple contact process at this µ. At later

times, the curves with σ ' 0.25 curve upwards implying that the system is in the

active phase. The curves for σ / 0.25 curve downward, indicating that the system is

in the inactive phase. Thus, σc(µ = 0.6) ≈ 0.25.

In contrast, the set of curves for µ = 0.428 (Fig. 4.3a) behaves very differently.

After an initial decay, Ns(t) curves strongly upwards for all values of σ down to the

smallest value studied, σ = 10−4. This suggests that at µ = 0.428, any nonzero σ
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Figure 4.3. (Color online) Spreading simulations: Number Ns of active sites as a
function of time t for several σ at fixed µ = 0.428 (panel a) and µ = 0.6
(panel b). The data are averages over 103 (at the smallest σ) to 105 runs.

takes the generalized contact process to the active phase. The phase transition thus

occurs at σ = 0.

We determined analogous sets of curves for many different values of the healing

rate in the interval µcpc = 0.30325 < µ < 0.65. We found that the phase transition

to the active phase occurs at σ = 0 for µcpc < µ < µ∗ = 0.552, while it occurs at a

nonzero σ for healing rates µ > µ∗. This establishes the phase diagram shown in Fig.

4.1. The phase boundary thus does not follow the simple crossover scenario outlined

above. In the following subsections, we analyze in detail the critical behavior of the

different nonequilibrium phase transitions.

4.4.3. Generic transition. We first consider the generic transition occurring

at µ > µ∗ ≈ 0.552 and nonzero σ (the blue dashed line in Fig. 4.1). Figure 4.4 shows
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Figure 4.4. (Color online) Spreading simulations at σ = 0.1 for several µ close to the
phase boundary. Main panel: Survival probability Ps as a function of
time t. The data are averages over 105 runs. Inset: Number Ns of active
sites as a function of time t.

a set of spreading simulations at σ = 0.1 and several µ in the vicinity of the phase

boundary. The data indicate a critical point at µ ≈ 0.582. We performed analogous

simulations for several points on the phase boundary. Figure 4.5 shows the survival

probability Ps and number Ns of active sites as functions of time for all the respective

critical points. In log-log representation, the Ns and Ps curves for different σ and µ

are perfectly parallel, i.e., they represent power-laws with the same exponent. Fits of

the asymptotic long-time behavior to Ps = Bσt
−δ and Ns = Cσt

Θ give estimates of

δ = 0.289(5) and Θ = 0.000(5). Moreover, we measured (not shown) the mean-square

radius R2(t) of the active cloud as a function of time. Its long time behavior follows

a universal power law. Fitting to R2(t) ∼ t2/z gives 2/z = 1.145(5) (z = 1.747(7)).

Here z = ν‖/ν⊥ is the dynamical exponent, i.e., the ratio between the correlation

time exponent ν‖ and the correlation length exponent ν⊥.

In addition to the spreading simulations, we also performed density decay sim-

ulations for several (µ, σ) points on the phase boundary. Characteristic results are

presented in Fig. 4.6. The figure shows that the density ρA of active sites at critical-

ity follows a universal power law, ρA = B̄σt
−α at long times. The corresponding fits

give α = 0.285(5) which agrees (within the error bars) with our value of the survival
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Figure 4.5. (Color online) Critical spreading simulations: Survival probability Ps and
number of active sites Ns as functions of t for several points (µ, σ) located
on the generic phase boundary. The inset shows the prefactor Bσ of the
critical power law Ps = Bσt

−δ as a function of σ. The solid line is a fit to
Bσ ∼ σ−ζ which gives ζ = 0.284.

probability exponent δ. We thus conclude that the generic transition of our system is

characterized by three independent exponents (for instance ν⊥, z and δ) rather than

four (as could be expected for a general absorbing state transition [4]). We point

out, however, that even though Ps and ρA show the same power-law time dependence

at criticality, the behavior of the prefactors differs. Specifically, the prefactor B̄σ

of the density is increasing with increasing σ while the prefactor Bσ of the survival

probability decreases with increasing σ.

All the exponents of the generic transition do not depend on µ or σ, implying

that the critical behavior is universal. Moreover, their values are in excellent agree-

ment with the known values of the PC (or DP2) universality class (see, e.g., Ref.
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Figure 4.6. (Color online) Critical density decay simulations: Density ρA of ac-
tive sites as function of t for several points (µ, σ) on the generic phase
boundary. The solid lines are fits to a power law ρA = B̄σt

−α giving
α = 0.285(5). The data represent averages of 400 runs with system size
L = 104.

[4, 5]). We therefore conclude that the critical behavior of the generic transition of

generalized contact process with two inactive states is universally in this class.

4.4.4. Transition at σ = 0. After discussing the generic transition, we

now turn to the line of transitions at µcpc < µ < µ∗ and σ = 0. To investigate these

transitions more closely, we performed both spreading and density decay simulations

at fixed µ and several σ-values approaching σ = 0 (as indicated by the solid (red)

arrows in the phase diagram, Fig. 4.1).

Let us start by discussing the density decay simulations. Figure 4.7 shows the

stationary density ρst of active sites as a function of σ for several values of the healing

rate µ. Interestingly, the stationary density depends linearly on σ for all healing rates

µcpc < µ < µ∗, in seeming agreement with mean-field theory. This means ρst = Bµσ
ω

with ω = 1 andBµ being a µ-dependent constant. We also analyzed, how the prefactor

Bµ of the mean-field-like behavior depends on the distance from the simple contact

process critical point. As inset a) of Fig. 4.7 shows, Bµ diverges as (µ− µcpc )−κ with

κ = 2.3(1).

At the critical healing rate µcpc of the simple contact process, the stationary

density displays a weaker σ-dependence. A fit to a power-law ρst ∼ σωcp gives an
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Figure 4.7. (Color online) Density decay simulations. Main panel: stationary density
ρst as a function of the boundary rate σ for various healing rates µ. For
µcpc < µ < µ∗, the solid lines are fits of the low-σ behavior to ρst = Bµσ.
At the simple contact process critical point, µ = µcpc = 0.30324, and at
the endpoint, µ = µ∗ = 0.552, we fit to power-laws ρst ∼ σω which gives
exponents of ωcp = 0.108(2) and ω∗ = 1.4(1). The data are averages over
50 to 200 runs with system sizes L = 2000 to 5000. Inset a: prefactor
Bµ of the linear σ dependence as a function of µ− µcpc . A fit to a power
law gives Bµ ∼ (µ − µcpc )−κ with κ = 2.32(10). Inset b: prefactor Bµ as
a function of µ∗ − µ. A fit to a power law gives Bµ ∼ (µ∗ − µ)κ

∗
with

κ∗ = 0.91.

exponent value of ωcp = 0.108(2). In contrast, at the endpoint at healing rate µ∗, the

corresponding exponent ω∗ = 1.4(1) is larger than 1.

These results of the density decay simulations must be contrasted with those

of the spreading simulations. Figure 4.8 shows the time dependence of the survival

probability Ps for µ = 0.4 and several σ. At early times, all curves follow the σ = 0

data due to the small values of the rate of the boundary activation process (143).

(Note that the σ = 0 curve does not reproduce the survival probability of the simple
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Figure 4.8. (Color online) Spreading simulations: Survival probability Ps as a func-
tion of time t at µ = 0.4 for various values of the boundary rate σ. The
data are averages over 100000 runs. Inset: Low-σ limit of the stationary
Ps as a function of µ. The dashed line is a fit to Ps ∼ (µ∗ − µ)β with
µ∗ = 0.552 and β = 0.87(5) in agreement with the PC universality class
(see, e.g., Refs. [4, 5]).

contact process. This is because in our generalized contact process, a sample is

surviving as long as not every site is in state I1 even if there are no active sites.) In

the long-time limit, the Ps curves approach nonzero constants, as expected in an active

phase. However, in contrast to the stationary density ρst (Fig. 4.7), the stationary

value of Ps does not go to zero with vanishing boundary σ. Instead, it approaches a

σ-independent constant. We performed similar sets of simulations at other values of

µ in the range µcpc < µ < µ∗, with analogous results. We therefore conclude that –

somewhat surprisingly – the survival probability and the stationary density of active

sites display qualitatively different behavior at the σ = 0 phase transition.

We now show that the properties of these quantities can be understood within a

simple domain wall theory. The relevant long-time degrees of freedom at µ > µcpc and

σ � 1 are the domain walls between I1 and I2 domains. These domains are formed

during the early time evolution when the system follows the simple contact process

dynamical rules (140) to (142). At late times, the domain walls can hop, they can

branch (one wall branching into three), and they can annihilate (two walls vanish if
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the meet on the same bond between two sites). This means, the domain wall dynamics

follows the branching-annihilating random walk with two offspring (BARW2).

In our case, the BARW2 dynamics is controlled by two rates, the domain wall

hopping rate Γ and the branching rate Ω (annihilation occurs with certainty if two

walls meet). These two rates depend on the underlying generalized contact process

dynamics. In the limit σ � 1 they are both linear in the boundary rate, Γ = σFΓ(µ),

Ω = σFΩ(µ) because a single boundary activation event is sufficient to start a domain

wall hop or branching (FΓ and FΩ are nontrivial functions of µ). Because both rates

are linear in σ, their ratio is σ-independent, thus the steady state of the domain walls

does not depend on σ in the limit σ � 1. This explains why the survival probability

Ps of the generalized contact process saturates at a nonzero, σ-independent value in

Fig. 4.8. It also explains the σ-dependence of the stationary density ρst of active sites

in the following way: For σ � 1 and µ > µcpc , active sites are created mostly at the

domain walls at rate σ. Consequently, their stationary density is proportional to both

σ and the stationary domain wall density ρdw, i.e., ρst ∼ σρdw, in agreement with Fig.

4.7. (The linear σ-dependence of ρst is thus not due to the validity of mean-field

theory.)

These results imply that the phase transition line at σ = 0 between µcpc and µ∗ is

not a true critical line because there is no (nontrivial) diverging length scale. It only

appears critical because the stationary density of active sites vanishes with σ. Note

that this is also reflected in the fact that the system is not behaving like a critical

system right on the phase transition line σ = 0 (no power-law time dependencies,

for instance). Instead, the physics of this transition line is controlled by the BARW2

dynamics of the domain walls with a finite correlation length for all µcpc < µ < µ∗.

4.4.5. Scaling at the contact process critical point (µcpc , 0). Even

though the generalized contact process is not critical at σ = 0 and µ > µcpc , its

behavior close to the critical point of the simple contact process can be understood

in terms of a phenomenological scaling theory.

Let us assume that the stationary density of active sites close to (µcpc , 0) fulfills

the homogeneity relation

ρst(∆µ, σ) = bβcp/ν
⊥
cpρst(∆µ b

−1/ν⊥cp , σb−ycp) (149)

where ∆µ = µ−µcpc and b denotes an arbitrary scale factor. βcp and ν⊥cp are the usual

order parameter and correlation length exponents and ycp denotes the scale dimension
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of σ at this critical point. Setting b = σ1/ycp then gives rise to the scaling form

ρst(∆µ, σ) = σβcp/(ν
⊥
cpycp)X

(
∆µσ−1/(ν⊥cpycp)

)
(150)

where X is a scaling function. At criticality, ∆µ = 0, this leads to ρst(0, σ) ∼
σβcp/(ν

⊥
cpycp) (using X(0) = const). Thus, ωcp = βcp/(ν

⊥
cpycp). For σ → 0 at nonzero

∆µ, we need the large-argument limit of the scaling function X. On the active side

of the critical point, ∆µ < 0, the scaling function must behave as X(x) ∼ |x|βcp to

reproduce the correct critical behavior of the density, ρst ∼ |µ− µcpc |βcp .
More interesting is the behavior on the inactive side of the critical point, i.e., for

∆µ > 0 and σ → 0. Here, we assume the scaling function to behave as X(x) ∼ x−κ.

In this limit, we thus obtain ρst ∼ (∆µ)−κσω (just as observed in Fig. 4.7) with

ω = (βcp + κ)/(ν⊥cpycp). As a result of our scaling theory, the exponents ω, ωcp and

κ are not independent, they need to fulfill the relation ωcp(βcp + κ) = βcpω. Our

numerical values, ω = 1, ωcp = 0.108(2) and κ = 2.32(10) fulfill this relation in

very good approximation, indicating that they represent asymptotic exponents and

validating the homogeneity relation (149). Using βcp = 0.2765 and ν⊥cp = 1.097 [19],

the resulting value for the scale dimension ycp of σ at the simple contact process

critical point is ycp = 2.34(4).

4.4.6. The endpoint (µ∗, 0). Finally, we turn to the point (µ∗, σ) =

(0.552, 0) where the generic phase transition line terminates on the µ axis. At first

glance, one might suspect this point to be a multicritical point because it is located at

the intersection of two phase transition lines. However, we argued in Subsubsec. 4.4.4

(based on the domain wall theory) that the transition line at σ = 0 and µcpc < µ < µ∗

is not critical. This implies that the endpoint (µ∗, 0) is not multicritical but a simple

critical point in the same universality class (viz., the PC class) as the generic transition

at µ > µ∗. In fact, the endpoint can be understood as the critical point of the BARW2

domain wall dynamics in the limit σ → 0.

To test this hypothesis, we first study the survival probability and density of

active sites as µ∗ is approached along the µ axis. The inset of Fig. 4.8 shows the

stationary survival probability (more precisely, its saturation value for σ → 0) as

a function of µ. The data can be well fitted by a power-law Ps ∼ (µ∗ − µ)β with

β = 0.87(5). The corresponding information on the stationary density of active sites

can be obtained from inset b) of Fig. 4.7. It shows the prefactor Bµ of the linear σ-

dependence ρst = Bµσ as a function of µ∗ − µ. Sufficiently close to µ∗, their relation

can be fitted by a power law Bµ ∼ (µ∗ − µ)κ
∗

with κ∗ = 0.91. Thus both β and κ∗
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agree with the order parameter exponent of the PC universality class within their

error bars. This confirms the validity of the domain wall theory of Subsubsec. 4.4.4

at µ∗.

The discussion of the σ-dependence of Ps and ρst right at µ∗ is somewhat more

complicated because it is determined by the subleading σ-dependencies of the domain-

wall rates Γ and Ω. Moreover, because the dynamics is extremely slow at µ ≈ µ∗

and σ � 1, our numerical results close to the endpoint are less accurate then our

other results. According to the domain wall theory of Subsubsec. 4.4.4, the stationary

survival probability should fulfill the homogeneity relation

Ps(∆µ, σ) = bβ/ν
⊥
Ps(∆µ b

−1/ν⊥ , σ b−y
∗
) (151)

where ∆µ = µ − µ∗ while β and ν⊥ are the order parameter and correlation length

exponents of the BARW2 transition (PC universality class). The only unknown

exponent is y∗. The same homogeneity relation should hold for the domain wall

density, but not the density of active sites.

Setting the scale factor to b = σ1/y∗ gives the scaling form

Ps(∆µ, σ) = σβ/(ν
⊥y∗)Y (∆µσ−1/(ν⊥y∗)) . (152)

Right at the endpoint, ∆µ = 0, this gives Ps ∼ σβ/(ν
⊥y∗). To test this power-law

relation and to determine y∗, we performed spreading simulations at µ = µ∗ and

several σ between 0.03 and 1. The low-σ behavior (not shown) can indeed be fitted

by a power law in σ with an exponent β/(ν⊥y∗) = 0.5(1). Using the well-known

values β = 0.92 and ν⊥ = 1.83 of the PC universality class, we conclude y∗ = 1.0(2).

Within the domain wall theory, ρDW ∼ Ps and the stationary density of active sites

is ρst ∼ σρDW ∼ σω
∗

with ω∗ = 1 + β/(ν⊥y∗) = 1.5(1). This agrees well with the

numerical estimate of 1.4(1) obtained from the density decay simulations in Fig. 4.7.

The scaling form (152) can also be used to determine the shape of the phase

boundary at µ > µ∗. The phase boundary corresponds to a singularity of the scaling

function Y at some nonzero value of its argument. Thus, the phase boundary follows

the power law σ ∼ (µ− µ∗)ν⊥y∗ . At fit of the data in Fig. 4.1 leads to ν⊥y∗ = 1.8(2)

which implies y∗ = 1.0(1) in agreement with the above estimate from the spreading

simulation data.

To investigate the time dependence of Ps close to the endpoint, the homogeneity

relation (151) can be generalized to include a time argument. On the right hand side,

it appears in the scaling combination (t/t0)bz with t0 the basic microscopic time scale.
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It is important to realize that this microscopic scale diverges as σ−1 with σ → 0

(independent of any criticality at µ∗). Thus, the right scaling combination is actually

tσbz. We used the resulting scaling theory to discuss the power-law decay of Ps on

the phase boundary shown in Fig. 4.5a. The scaling theory predicts Ps ∼ σ−ζt−δ with

ζ ≡ δ as the endpoint is approached. This agrees with our numerical data (shown in

the inset of Fig. 4.5a) which give ζ ≈ 0.284

In summary, all our simulation data support the notion that the endpoint (µ∗, 0)

is a not a true multicritical point but a simple critical point in the same universality

class (PC) as the entire generic phase boundary at µ ≥ µ∗. The behavior of some

observables makes it appear multicritical, though, because the microscopic time scale

of the domain wall dynamics diverges with σ → 0.

4.5. CONCLUSIONS

In summary, we have studied the phase transitions of the generalized contact

process with two absorbing states in one space dimension by means of large-scale

Monte-Carlo simulations. We have found that this model has two different nonequi-

librium phase transitions, (i) the generic transition occurring for sufficiently hight

values µ > µ∗ of the healing rate and nonzero values of the boundary activation rate

σ, and (ii) a transition at exactly σ = 0 for µcpc < µ < µ∗.

The generic transition is in the parity-conserving (PC) universality class (which

coincides with the DP2 class in one dimension) everywhere on the µ ≥ µ∗ phase

boundary, in agreement with earlier work [13, 17]. In contrast, the σ = 0 transition

turned out to be not critical. The density of active sites rather goes to zero with

the vanishing boundary activation rate σ while the survival probability remains finite

for σ → 0. Its behavior is controlled by the BARW2 dynamics of the domain walls

between different inactive domains (which is not critical for µcpc < µ < µ∗). It is

interesting to note that the behavior of our model at σ ≡ 0 differs qualitatively from

the σ → 0 limit of the finite-σ behavior in the entire parameter region µcpc < µ < µ∗.

As a result, the crossover between directed percolation (DP) critical behavior at

σ ≡ 0 and parity conserving (PC) critical behavior for σ > 0 does not take the naively

expected simple scaling form. In particular, the generic (σ > 0) phase boundary does

not continuously connect to the critical point of the σ ≡ 0 theory (the simple contact

process critical point). Instead, it terminates at a separate endpoint (µ∗, 0) on the

µ-axis. While this point shares some characteristics with a multicritical point, it is

actually just a simple critical point in the same universality class (PC) as the entire

generic phase boundary.
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We emphasize that the crossover between the DP and PC universality classes

as a function of σ in our model is very different from that investigated by Odor and

Menyhard [20]. These authors started from the PC universality class and introduced

perturbations that destroy the symmetry between the absorbing states or destroy the

parity conservation in branching and annihilating random walk models. They found

more conventional behavior that can be described in terms of crossover scaling. In

contrast, the transition rates (140) to (143) of our model do not break the symmetry

between the two inactive states anywhere in parameter space.

Crossovers between various universality classes of absorbing state transitions

have also been investigated by Park and Park [21, 22, 23]. They found a discontinuous

jump in the phase boundary similar to ours along the so-called excitatory route from

infinitely many absorbing states to a single absorbing state [21]. Moreover, there is

some similarity between our mechanism and the so-called channel route [22] from the

PC universality class to the DP class which involves an infinite number of absorbing

states characterized by an auxiliary density. In our case, at σ ≡ 0 (but not at any finite

σ), any configuration consisting of I1 and I2 only can be considered absorbing because

active sites cannot be created. The density of I1-I2 domain walls then plays the role

of the auxiliary density; it vanishes at the endpoint (µ∗, 0). However, our crossover

occurs in the opposite direction than that of Ref. [22]: The small parameter σ takes

the system from the DP universality class to the PC class. Note that an unexpected

survival of active sites has also been observed in a version of the nonequilibrium

kinetic Ising model with strong disorder. Here, the disorder can completely segment

the system, and in odd-parity segments residual particles cannot decay [24].

The generalized contact process as defined in eqs. (140) to (143) is characterized

by three independent rates (one rate can be set to one by rescaling the time unit). In

the bulk of our paper, we have focused on the case µ̄ = µ for which our system reduces

to the usual contact process in the limit of σ → 0. In order to study how general

our results are, we have performed a few simulation runs for µ̄ 6= µ focusing on the

fate of the endpoint that separates the generic transition from the σ = 0 transition.

The results of these runs are summarized in Fig. 4.9 which shows the phase diagram

projected on the µ̄− µ plane.

The figure shows that the line of endpoints of the generic phase boundary re-

mains distinct from the simple contact process (σ = 0) critical line in the entire µ̄−µ
plane. The two lines only merge at the point µ̄ = 0, µ = 1 where the system behaves

as compact directed percolation [13].
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Figure 4.9. (Color online) Projection of the phase diagram of the generalized contact
process on the µ̄ − µ plane. The individual symbols show the locations
of the phase boundaries as determined from our simulations: solid blue
circles – transition for σ ≡ 0 (simple contact process), solid red triangles
– generic transition for σ = 1, open squares – approximate location of the
endpoint of the generic transition (σ → 0) estimated from the transition
at σ = 0.01. The lines are guides to the eye only. Points A and B are the
simple contact process critical point and the endpoint investigated in the
main part of the paper.

Our study was started because simulations at µ ' µcpc and σ � 1 [18] seemed to

suggest that the generalized contact process with two absorbing states is always active

for any nonzero σ. The detailed work reported in this paper shows that this is not the

case; a true inactive phase appears, but only at significantly higher µ > µ∗. Motivated

by this result, we also carefully reinvestigated the generalized contact process with

n = 3 absorbing states which has been reported to be always active (for any nonzero

σ) in the literature [13, 17]. However, in contrast to the two-absorbing-states case,

we could not find any inactive phase in this system.

Let us close by posing the question of whether a similar splitting between the n =

1 critical point and the n = 2 phase transition line also occurs in other microscopic

models with several absorbing states. Answering this questions remains a task for

the future.
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5. GENERALIZED CONTACT PROCESS WITH TWO SYMMETRIC

ABSORBING STATES IN TWO DIMENSIONS

Man Young Lee and Thomas Vojta

Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA

Abstract17

We explore the two-dimensional generalized contact process with two absorbing

states by means of large-scale Monte-Carlo simulations. In part of the phase diagram,

an infinitesimal creation rate of active sites between inactive domains is sufficient to

take the system from the inactive phase to the active phase. The system therefore

displays two different nonequilibrium phase transitions. The critical behavior of the

generic transition is compatible with the generalized voter (GV) universality class,

implying that the symmetry-breaking and absorbing transitions coincide. In contrast,

the transition at zero domain-boundary activation rate is not critical.

17All of this section is reproduced from the manuscript (e-printed version, arXiv: 1010.3298) which
is accepted for publication in Physical Review E.
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5.1. INTRODUCTION

Phase transitions between different nonequilibrium steady states are a topic

of great current interest in statistical physics. These transitions display large-scale

fluctuations and collective behavior over large distances and long times just as equi-

librium phase transition. They occur, for example, in surface growth, granular flow,

chemical reactions, population dynamics, and even in traffic jams [1, 2, 3, 4, 5, 6, 7].

The so-called absorbing state transitions are a particularly well-studied type of

nonequilibrium phase transitions. They separate fluctuating (active) steady states

from absorbing (inactive) states where fluctuations stop completely. Generically, ab-

sorbing state transitions are in the directed percolation (DP) [8] universality class;

Janssen and Grassberger [9, 10] conjectured that all absorbing state transitions with

a scalar order parameter and short-range interactions belong to this class as long

as there are no extra symmetries or conservation laws. This conjecture has been

confirmed in countless theoretical and computer simulation studies. Experimental

verifications were found in ferrofluidic spikes [11] and in the transition between two

turbulent states in a liquid crystal [12].

In recent years, significant attention has focused on absorbing state transitions

in universality classes different from DP that can occur if the system features addi-

tional symmetries or conservation laws. In 1997, Hinrichsen [13] suggested several

nonequilibrium stochastic lattice models with n ≥ 2 absorbing states. In the case of

two symmetric absorbing states (n = 2), he found the transition to be in a different

universality class, the Z2-symmetric directed percolation (DP2) class which is some-

times also called directed Ising (DI) class. If the symmetry between the absorbing

states is broken, the critical behavior reverts back to DP.

Recently, we revisited [14] one of the stochastic lattice models introduced in

Ref. [13], viz., the generalized contact process with two absorbing states in one space

dimension. By employing large-scale Monte-Carlo simulations, we found a rich phase

diagram featuring two different nonequilibrium phase transitions separated by a spe-

cial point that shares some characteristics with a multicritical point. The generic

transition occurs at nonzero values of the infection, healing and domain-boundary

activation rates. It belongs to the DP2 universality class which coincides [4] with

the parity-conserving (PC) class [15] (occurring, e.g., in the branching-annihilating

random walk with an even number of offspring (BARWE) [16]). In addition, we found
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an unusual line of phase transitions at zero domain-boundary activation rate which

turned out to be non-critical.

Here, we consider the generalized contact process with two symmetric absorbing

states in two space dimensions. The purpose of this paper is twofold. First, we wish to

investigate whether the two-dimensional generalized contact process also displays the

above-mentioned rich phase diagram having two nonequilibrium phase transitions.

Second, we wish to study the critical behavior of these transitions and their univer-

sality. According to a conjecture by Dornic et al. [17], the DP2 universality class

in two dimensions should coincide with the generalized voter (GV) universality class

for which the upper critical dimension is exactly two. Alternatively, the transition

could split into a symmetry-breaking Ising transition and a DP transition [18, 19].

To address these questions, we perform large-scale Monte-Carlo simulations.

Our paper is organized as follows. We introduce the generalized contact process

with several absorbing states in Subsec. 5.2. Subsec. 5.3 is devoted to the results and

interpretation of our Monte-Carlo simulations. We conclude in Subsec. 5.4.

5.2. GENERALIZED CONTACT PROCESS WITH SEVERAL

ABSORBING STATES

We first define the simple contact process [20], one of the prototypical models

in the DP universality class. Each site r of a d-dimensional hypercubic lattice can be

in one of two states, either A, the active (infected) state or I, the inactive (healthy)

state. During the time evolution of the contact process, active sites infect their

nearest neighbors, or they heal (become inactive) spontaneously. More rigorously,

the contact process is a continuous-time Markov process during which active sites

become inactive at a rate µ, while inactive sites turn active at a rate λm/(2d) where

m is the number of active nearest neighbor sites. The healing rate µ and the infection

rate λ are external parameters.

The long-time state of the contact process is determined by the ratio of these

two rates. If µ� λ, healing occurs much more often than infection. Thus, all infected

sites will eventually become inactive, and the absorbing state without any active sites

is the only steady state. Consequently the system is in the inactive phase for µ� λ.

In the opposite limit, λ � µ, the infection survives for infinite times, i.e., there is a

steady state with a nonzero density of active sites. This is the active phase. These

two phases are separated by a nonequilibrium phase transition in the DP universality

class occurring at some critical value of the ratio λ/µ.
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Following Hinrichsen [13], we now generalize the contact process to n absorbing

states. Each lattice site can now be in one of n + 1 states, the active state A or one

of the n different inactive states Ik (k = 1 . . . n). k is sometimes referred to as the

“color” index. The Markov dynamics of the generalized contact process is defined via

the following transition rates for pairs of nearest-neighbor sites,

w(AA→ AIk) = w(AA→ IkA) = µ̄/n , (153)

w(AIk → IkIk) = w(IkA→ IkIk) = µk , (154)

w(AIk → AA) = w(IkA→ AA) = λ , (155)

w(IkIl → IkA) = w(IkIl → AIl) = σ , (156)

with k, l = 1 . . . n and k 6= l. All other transition rates vanish. We are mostly

interested in the fully symmetric case, µk ≡ µ for all k. For n = 1 and µ̄ = µ,

the so defined generalized contact process coincides with the simple contact process

discussed above. One of the rates µ̄, µ, λ, and σ can be set to unity without loss

of generality, thereby fixing the unit of time. We choose λ = 1 in the following.

Moreover, to keep the parameter space manageable, we focus on the case µ̄ = µ 18.

The rate (156) is responsible for the new physics in the generalized contact

process. It prevents inactive domains of different color (different k) to stick together

indefinitely. By creating active sites at the domain wall, the two domains can separate.

Thus, the rate (156) allows the domain walls to move through space. We emphasize

that without the process (156), i.e., for σ = 0, the color of the inactive sites becomes

unimportant, and all Ik can be identified. Consequently, for σ = 0, the dynamics

of the generalized contact process reduces to that of the simple contact process for

all values of n. In the main part of this paper, we shall focus on the case of n = 2

inactive states.

Before we turn to our Monte-Carlo simulations of the two-dimensional general-

ized contact process, let us briefly summarize the simulation results in one dimension

[14] for comparison. For σ = 0, i.e., in the absence of the boundary activation

process (156), the system undergoes an absorbing state transition at a healing rate

µ = µcpc ≈ 0.303, which agrees with the critical healing rate of the simple contact

process. In agreement with the general arguments above, this transition is in the

DP universality class. For healing rates between µcpc and µ∗ ≈ 0.552, the system is

18We studied the phase diagram for µ̄ 6= µ in one space dimension in Ref. [14]. We found that the
qualitative behavior is the same as in the µ̄ = µ case. We expect the same to be true in two space
dimensions.
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inactive if σ = 0 but an infinitesimal nonzero σ takes it to the active phase. Finally,

for µ > µ∗, the transition occurs at a finite nonzero value of σ. The one-dimensional

generalized contact process with two inactive states thus has two lines of phase tran-

sitions, (i) the generic transition occurring at µ > µ∗ and σ = σc(µ) > 0 and (ii) the

transition occurring for µcpc < µ < µ∗ as σ approaches zero.

5.3. MONTE-CARLO SIMULATIONS

5.3.1. Method and phase diagram. In order to address the two main

problems raised in the introduction, viz, the phase diagram of the two-dimensional

generalized contact process with two inactive states and the critical behavior of its

phase transitions, we performed two types of large-scale Monte Carlo simulations,

(i) decay runs and (ii) spreading runs. Decay runs start from a completely active

lattice; we measure the time evolution of the density ρ(t) of active sites as well as the

densities ρ1(t) and ρ2(t) of sites in inactive states I1 and I2, respectively. Spreading

simulations start from a single active (seed) site embedded in a system of sites in

state I1. Here we monitor the survival probability Ps(t), the number of sites in the

active cloud Ns(t) and the mean-square radius of this cloud, R2(t).

In both types of runs, the simulation is a sequence of individual events. In each

event, a pair of nearest-neighbor sites is randomly selected from the active region.

For the spreading simulations, the active region initially consists of the seed site and

its neighbors; it is updated in the course of the simulation according to the actual

size of the active cluster. For the decay runs, the active region comprises the entire

sample. The selected pair than undergoes one of the possible transitions according

to eqs. (153) to (156) with probability τw. Here the time step τ is a constant which

we fix at 1/2. The time increment associated with the event is τ/Npair where Npair is

the number of nearest-neighbor pairs in the active region.

Using this procedure, we investigated the parameter region 0.5 ≤ µ ≤ 1.2 and

0 ≤ σ ≤ 1. We simulated samples with sizes up to 20000 × 20000 sites for times up

to tmax = 3× 106. The σ − µ phase diagram that emerged from these calculations is

shown in in Fig. 5.1.

In many respects, it is similar to the phase diagram of the one-dimensional

generalized contact process [14]. In the absence of the domain-boundary activation

process (i.e., for σ = 0), the transition from the active phase to the inactive phase

occurs at a healing rate of µ = µcpc = 0.6066(2) which agrees well with the critical

point of the simple contact process (see, e.g., Refs. [22, 23]). For healing rates in

the interval µcpc < µ < µ∗ = 1.0000(2), the generalized contact process is inactive
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Figure 5.1. (Color online) Phase diagram of the two-dimensional generalized contact
process with two inactive states as function of the healing rate µ and the
domain-boundary activation rate σ. For µ < µcpc = 0.6066, the system is
in the active phase for any σ. For µcpc < µ < µ∗ = 1.0000, the system is
inactive at σ = 0 (thick solid red line), but an infinitesimal σ takes it to
the active phase. For µ > µ∗, the system is inactive for any σ.

at σ = 0, but an infinitesimal nonzero σ takes it to the active phase. Thus, we find

a line a phase transitions at µcpc < µ < µ∗ and σ = 0. In addition to this line of

σ = 0 absorbing state transitions, we also find a line of generic (nonzero σ and µ)

transitions. In contrast to one space dimension, this line is exactly “vertical” within

our accuracy, i.e., the critical healing rate µc = 1.0000(2) does not depend on σ for

all σ > 0. We note in passing that our critical healing rate is in agreement with the

estimate µc ≈ 0.99(1) obtained in Ref. [13] for σ = 1.

In the following subsections we shall discuss in detail the properties of both

phase transition lines as well as special point (µ∗, 0) that separates them.

5.3.2. Generic transition. In order to identify the generic transition and

to study its critical behavior, we performed sets of spreading simulations at constant

domain-boundary activation rate σ = 0.01, 0.05, 0.1, 0.5 and 1. For each σ, we have

varied the healing rate µ varying from 0.8 to 1.1. Figure 5.2 shows the resulting

time evolution of the survival probability Ps and the number of sites in the active

cloud Ns(t) for σ = 0.1 and several µ. The data indicate a critical healing rate of

µc = 1.0000(2) for this σ value. Analogous simulations for σ = 0.01, 0.05, 0.5 and
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Figure 5.2. (Color online) Spreading simulations at σ = 0.1 for several µ close to the
phase boundary. Main panel: Number Ns of active sites as a function of
time t. Inset: Survival probability Ps as a function of time t. The data
close to criticality are averages over 106 runs on a 4000 × 4000 system,
smaller numbers of runs were used away from criticality.

1 yielded, somewhat surprisingly, exactly the same critical healing rate. We thus

conclude that in the two-dimensional generalized contact process, the critical healing

rate µc is independent of σ for all σ > 0.

Figure 5.3 shows the survival probability Ps and number Ns of active sites as

functions of time for all the respective critical points. In log-log representation, the

long-time parts of the Ns and Ps curves for different σ are perfectly parallel within

their statistical errors, i.e., they differ only by constant factors, confirming that the

critical behavior of the generic transition is universal. Fits of the long-time behavior

to the pure power laws Ps = Bσt
−δ and Ns = Cσt

Θ give estimates of δ = 0.900(15)

and Θ = −0.100(25). These values are very close to the mean-field values δMF = 1

and ΘMF = 0. According to the conjecture by Dornic et al. [17], the generic transition

should be in the GV universality class. Because the upper critical dimension of this

universality class is exactly two, this conjecture corresponds to mean-field behavior

with logarithmic corrections.

To test this prediction we compare in Fig. 5.4 plots of ln(Ps t) vs. ln(t) (straight

lines corresponds to power laws) and Ps t vs. ln(t) (straight lines correspond to loga-

rithmic behavior). Although both functional forms describe the long-time data rea-

sonably well, the curves in the ln(Ps t) vs. ln(t) plot show a systematic downward
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Figure 5.3. (Color online) Survival probability Ps and number of active sites Ns as
functions of t for several points located on the generic phase boundary
µ = 1.0000 (2 × 106 to 107 runs used). Inset: prefactor Bσ vs. σ. The
straight line is a fit to a power-law Bσ ∼ σ−ζ .

curvature. Moreover, the semi-logarithmic plot, Ps t vs. ln(t), leads to straight lines

over a longer time interval which we take as evidence for GV critical behavior. We

performed an analogous analysis for number of active sites Ns. Again, both a simple

power law and mean-field behavior with logarithmic corrections describe the data

reasonably well, with the quality of fits being somewhat higher for the latter case.

We also measured (not shown) the mean-square radius R2(t) of the active cloud as a

function of time. A pure power-law fit of its long time behavior, R2(t) ∼ t2/z, gives

2/z = 0.97(4) (z = 2.06(8)). The data can be described equally well by mean-field

behavior R2(t) ∼ t with logarithmic corrections.

In addition to the spreading runs, we also performed density decay runs at

the generic phase boundary. The resulting density of active sites ρ as a function of

time can be fitted with a pure power law ρ(t) ∼ t−α giving a very small value of
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Figure 5.4. (Color online) Survival probability Ps(t) for several points located on the
generic phase boundary plotted as Ps t vs. ln(t). Straight lines correspond
to mean-field behavior with logarithmic corrections. Inset: Same data
plotted as ln(Ps) t) vs. ln(t). Straight lines represent pure power laws.

α = 0.080(4). A better fit is achieved with the simple logarithmic time dependence

ρ(t) ∼ 1/ ln(t/t0) (with t0 a microscopic time scale) expected for the GV universality

class. This type of behavior is demonstrated in Fig. 5.5.

In summary, although all our results for the generic transition can be fitted

both by pure power laws and by mean-field behavior with logarithmic corrections,

the latter functional forms yield fits of somewhat higher quality. We also note that

the critical exponents resulting from the pure power-law fits approximately fulfill the

hyperscaling relation Θ−d/z = −α− δ. However, the agreement is not very good (in

particular, it is significantly worse than in one dimension [14]), indicating that the

measured pure power-laws are not the true asymptotic behavior. Our results thus

support the conjecture that the generic transition of the two-dimensional generalized

contact process with two inactive states is in the GV universality class.

5.3.3. Transition at σ = 0. After addressing the generic transition, we

now discuss in more detail the line of phase transitions occurring at σ = 0 and

µcpc < µ < µ∗. To study these transitions, we carried out several sets of simulations

for fixed healing rate µ and several σ values approaching σ = 0.

We start by discussing the density decay runs. Figure 5.6 shows the stationary

density ρst of active sites (reached at long times) as function of σ for several values

of the healing rate µ. The figure shows that the stationary density depends linearly
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Figure 5.5. (Color online) Density of active sites plotted as ρ−1(t) vs. ln(t) for several
points located on the generic phase boundary. The data are averages over
100 runs with system size 500 × 500. The curve for σ = 0.01 is shown
in the inset because its density values are much smaller than those of the
other curves.

on σ for all healing rates in the interval µcpc < µ < µ∗, i.e., ρst = Bµσ
ω with ω = 1

and Bµ being a µ-dependent constant. We also analyzed how the prefactor Bµ of this

mean-field-like behavior depends on the distances from the simple contact process

critical point and from the special point at µ = µ∗ and σ = 0. As inset (a) of Fig.

5.6 shows, Bµ diverges as (µ − µcpc )−κ with κ = 1.56(5). According to inset (b), it

vanishes as (µ∗ − µ)κ
∗

with κ∗ ≈ 0.23 when approaching µ∗.

At the critical healing rate µcpc of the simple contact process, the stationary

density displays a weaker σ-dependence. A fit to a power-law ρst ∼ σωcp gives an

exponent value of ωcp = 0.274(5).

Let us now compare these results with the behavior of spreading simulations in

the same parameter region. Figure 5.7 shows the survival probability Ps(t) and the

number of active sites Ns(t) for a fixed healing rate of µ = 0.8 and several values

of the boundary rate σ. After an initial decay, the number of active sites grows

with time for all σ values, establishing that the system is in the active phase for

all σ > 0. In agreement with this, the survival probability approaches a nonzero

constant in the long-time limit. Remarkably, this stationary survival probability

does not approach zero with vanishing σ. Instead, it approaches a σ-independent
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Figure 5.6. (Color online) Density decay simulations. Main panel: stationary density
ρst as a function of the boundary rate σ for various healing rates µ. For
µcpc < µ < µ∗, the solid lines are fits of the low-σ behavior to ρst = Bµσ.
At the simple contact process critical point, µ = µcpc = 0.6066, we fit to
the power-law ρst ∼ σωcp which gives an exponent of ωcp = 0.274(5). The
data are averages over 300 to 600 runs with system sizes 100× 100. Inset
a: prefactor Bµ of the linear σ dependence as a function of µ− µcpc . A fit
to a power law gives Bµ ∼ (µ−µcpc )−κ with κ = 1.56(5). Inset b: prefactor
Bµ as a function of µ∗ − µ. A fit to a power law gives Bµ ∼ (µ∗ − µ)κ

∗

with κ∗ ≈ 0.23.

constant. We performed similar sets of simulations at other values of µ in the range

µcpc < µ < µ∗, with analogous results.

We thus conclude that the behavior at the σ = 0 transition of the two-dimensional

generalized contact process is very similar to the one-dimensional case. It can be un-

derstood in terms of the domain-wall motion as follows [14]. The relevant long-time

degrees of freedom at µ > µcpc and σ � 1 are the domain walls between I1 and I2

domains. These walls can hop, branch and annihilate. The crucial observation is

that the rates which control the domain wall dynamics are all proportional to σ for

σ � 1, implying that their ratios are σ-independent. Consequently, the stationary

state of the domain walls does not depend on σ for σ � 1. This explains why the
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Figure 5.7. (Color online) Spreading simulations: Survival probability Ps and number
of active sites Ns as functions of time t for a fixed healing rate of µ =
0.8 and several σ. The data are averages over 2000 to 10000 runs on a
4000× 4000 system.

survival probability Ps saturates at a nonzero, σ-independent value in Fig. 5.7. It

also explains the σ-dependence of the stationary density ρst because active sites are

created mostly at the domain walls at rate σ. Therefore, their stationary density is

proportional to both σ and the stationary domain wall density ρdw, i.e., ρst ∼ σρdw,

in agreement with Fig. 5.6. Based on this argument, the exponent κ∗ in inset (b)

of Fig. 5.6 should be identical to the exponent β of the generic transition line [14],

which vanishes in mean-field theory. Our value, κ∗ ≈ 0.23 is thus somewhat too high

which we attribute to it not representing the asymptotic behavior, in agreement with

the significant curvature of the data in inset (b) of Fig. 5.6.

Just as in one dimension, the phase transition line at σ = 0 and µcpc < µ < µ∗

is thus not a true critical line. It only appears critical because the stationary density

ρst (trivially) vanishes with σ. Correspondingly, the time evolution right on the
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transition line σ = 0 does not display critical power laws. also implies that the point

(µ, σ) = (µ∗, 0) is not a multicritical point, but a simple critical point in the same

universality class as the generic transition.

5.3.4. Scaling of ρst at the contact process critical point (µcpc , 0). The

behavior of the stationary density of active sites ρst close to the simple contact process

critical point at µ = µcpc and σ = 0 can be understood in terms of a phenomenological

scaling theory. We assume the homogeneity relation

ρst(∆µ, σ) = bβcp/ν
⊥
cpρst(∆µ b

−1/ν⊥cp , σb−ycp) (157)

where ∆µ = µ−µcpc , and b is an arbitrary scale factor. βcp = 0.584 and ν⊥cp = 0.734 are

the usual order parameter and correlation length exponents of the two-dimensional

contact process [22, 23], and ycp denotes the scale dimension of σ at this critical point.

Setting b = σ1/ycp gives rise to the scaling form

ρst(∆µ, σ) = σβcp/(ν
⊥
cpycp)X

(
∆µσ−1/(ν⊥cpycp)

)
(158)

where X is a scaling function. At criticality, ∆µ = 0, this leads to ρst(0, σ) ∼
σβcp/(ν

⊥
cpycp) (using X(0) = const). Thus, ωcp = βcp/(ν

⊥
cpycp). For σ → 0 at nonzero

∆µ, we need the large-argument limit of the scaling function X. On the active side of

the critical point, ∆µ < 0, the scaling function behaves as X(x) ∼ |x|βcp to reproduce

the correct critical behavior of the density, ρst ∼ |µ− µcpc |βcp .
On the inactive side of the critical point, i.e., for ∆µ > 0 and σ → 0, we assume

the scaling function to behave as X(x) ∼ x−κ. We thus obtain ρst ∼ (∆µ)−κσω (just

as observed in Fig. 5.6) with ω = (βcp +κ)/(ν⊥cpycp). As a result of our scaling theory,

the exponents ω, ωcp and κ are not independent, they need to fulfill the relation

ωcp(βcp + κ) = βcpω. Our numerical values, ω = 1, ωcp = 0.274 and κ = 1.56 fulfill

this relation in very good approximation, indicating that they represent asymptotic

exponents and validating the homogeneity relation (157). The resulting value for the

scale dimension ycp of σ at the simple contact process critical point is ycp = 2.9(1).

5.4. CONCLUSIONS

To summarize, we investigated the two-dimensional generalized contact process

with two inactive states by means of large-scale Monte-Carlo simulations. Its global

phase diagram is very similar to that of the corresponding one-dimensional model.

In particular, the generic (σ > 0) phase boundary between the active and inactive

phases does not continuously connect to the critical point of the σ = 0 problem, i.e.,
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the critical point (µcpc , 0) of the simple contact process. Instead, it terminates at a

separate end point (µ∗, 0) on the µ axis. As a result, the two-dimensional generalized

contact process has two nonequilibrium phase transitions. In addition to the generic

transition occurring for σ > 0, there is a line of transitions at σ = 0 and µcpc < µ < µ∗.

We note that there is one interesting difference between the phase diagrams in one

and two dimensions. In one dimension, the critical healing rate µc increases with

increasing boundary rate σ. In contrast, the results of this paper show that the

critical healing rate in two dimensions is completely independent of σ. The reason

for this difference is presently an open question.

To determine the critical behavior of the generic transition, we performed simu-

lations at and close to several points on the generic (σ > 0) phase boundary. We found

the same critical behavior for all of these points, i.e, it is universal. Our data can be

fitted reasonably well with pure power laws, giving the exponents Θ = −0.100(25),

δ = 0.900(15), α = 0.080(4), and z = 2.06(8). However, fits of equal and sometimes

even better quality over longer ranges of time can be obtained by fitting to mean-field

critical behavior, Θ = 0, δ = 1, α = 0, and z = 2 with logarithmic corrections. We

thus conclude that our results support the conjecture [17] that the critical behavior

of the two-dimensional generalized contact process is in the generalized voter (GV)

universality class which is right at its upper critical dimensions. (In other words,

the DP2 class coincides with the GV class in two dimensions). We also note that

our simulations showed no indications of the transition being split into a symmetry-

breaking transition and a separate DP transition as found in some absorbing-state

Potts models [18].

As in one space dimension, the line of transitions at σ = 0 and µcpc < µ < µ∗

is not a critical line. The survival probability Ps remains finite when approaching

this line. The density ρ of active sites vanishes, but simply because the domain-

boundary activation rate σ vanishes. The behavior in the vicinity of the transition

line is controlled by the dynamics of the I1-I2 domain walls which is not critical for

µcpc < µ < µ∗.

Crossovers between various universality classes of absorbing state transitions in

one dimension have been investigated by several authors [24, 25, 26, 27]. Some of the

scenarios lead to conventional crossover scaling (of the type σc ∼ (µ− µcpc )1/φ). Park

and Park [25] found a discontinuous jump in the phase boundary along the so-called

excitatory route from infinitely many absorbing states to a single absorbing state.

There also is some similarity between our mechanism and the so-called channel route

[26] from the PC universality class to the DP class which involves an infinite number
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of absorbing states characterized by an auxiliary density (which is density of I1-I2

domain walls in one-dimensional the generalized contact process [14]). To the best of

our knowledge, a similarly systematic investigation of crossovers between absorbing

state universality classes in two space dimensions has not yet been performed.

As our results suggest that the two-dimensional generalized contact process is

right at the upper critical dimensions, the critical behavior of its (generic) phase

transition in dimensions d > 2 should be governed by mean-field theory.

Acknowledgements

We acknowledge helpful discussions with Ronald Dickman, Geza Odor and Hyunggyu

Park. This work has been supported in part by the NSF under grant no. DMR-

0339147 and DMR-0906566 as well as by Research Corporation.



106

[1] V. P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 20, 113 1994.

[2] B. Schmittmann and R. K. P. Zia, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz Academic, New York, 1995, Vol. 17, p.

1.

[3] J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models

Cambridge University Press, Cambridge, England, 1999.

[4] H. Hinrichsen, Adv. Phys. 49, 815 2000.

[5] G. Odor, Rev. Mod. Phys. 76, 663 2004.

[6] S. Lbeck, Int. J. Mod. Phys. B 18, 3977 2004.

[7] U. C. Tuber, M. Howard, and B. P. Vollmayr-Lee, J. Phys. A 38, R79 2005.

[8] P. Grassberger and A. de la Torre, Ann. Phys. N.Y. 122, 373 1979.

[9] H. K. Janssen, Z. Phys. B 42, 151 1981.

[10] P. Grassberger, Z. Phys. B 47, 365 1982.

[11] P. Rupp, R. Richter, and I. Rehberg, Phys. Rev. E 67, 036209 2003.

[12] K. A. Takeuchi, M. Kuroda, H. Chate, and M. Sano, Phys. Rev. Lett. 99,

234503 2007.

[13] H. Hinrichsen, Phys. Rev. E 55, 219 1997.

[14] M. Y. Lee and T. Vojta, Phys. Rev. E 81, 061128 (2010).

[15] P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A 17, L105 1984.

[16] D. Zhong and D. B. Avraham, Phys. Lett. A 209, 333 1995.

[17] I. Dornic, H. Chate, J. Chave, and H. Hinrichsen, Phys. Rev. Lett. 87, 045701

(2001).

[18] [18] M. Droz, A. L. Ferreira, and A. Lipowski, Phys. Rev. E 67, 056108 (2003).

[19] [19] O. Al Hammal, H. Chate, I. Dornic, and M. A. Munoz, Phys. Rev. Lett.

94, 230601 (2005).

[20] T. E. Harris, Ann. Probab. 2, 969 1974.



107

[21] We studied the phase diagram for µ̄ 6= µ in one space dimension in Ref. [14].

We found that the qualitative be- havior is the same as in the µ̄ = µ case. We

expect the same to be true in two space dimensions.

[22] R. Dickman, Phys. Rev. E 60, R2441 (1999).

[23] T. Vojta, A. Farquhar, and J. Mast, Phys. Rev. E 79, 011111 (2009)

[24] G. Odor and N. Menyhard, Phys. Rev. E 78, 041112 2008.

[25] S.-C. Park and H. Park, Phys. Rev. E 76, 051123 2007.

[26] S.-C. Park and H. Park, Phys. Rev. E 78, 041128 2008.

[27] S.-C. Park and H. Park, Phys. Rev. E 79, 051130 2009.



108

VITA

Man Young Lee was born on April 01, 1972 in Seoul, Korea(South of). He

received his bachelor degree in physics from Soongsil University, Seoul, Korea in

Feb 1998. In the same year he joined the group of Prof. Dr. Cha-Hwan Oh as a

graduate student at the Physics Department, Hanyang University, Seoul, Korea. His

research topic for a master degree was for development of a small gamma camera

and study for characteristics of scintillation crystals. In August 2004, he started his

Ph. D program in the Department of Physics, Missouri University of Science and

Technology (formerly University of Missouri-Rolla). From on August 2005, he was

supervised by Dr. Thomas Vojta.


