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ABSTRACT

A quantum phase transition is a phase transition at absolute zero occurring

under variations in an external non-thermal parameter such as magnetic field or pres-

sure. Quantum phase transitions are one among the important topics currently inves-

tigated in condensed matter physics. They are observed in various systems, e.g., in

the ferromagnetic-paramagnetic phase transition in LiHoF4 or in the superconductor-

metal phase transition in nanowires.

A particular class of quantum phase transitions, which is phase transitions in

the presence of disorder and dissipation, is investigated here. An example of this

class is the ferromagnetic-paramagnetic phase transition in Ni1−xVx or CePd1−xRhx

caused by variations in chemical composition. In these system, disorder is due to

random positions of doping element and the dynamics of order-parameter fluctuations

is dissipative due to conduction electrons.

These quantum phase transitions are explained using the following approach:

The Landau-Ginzberg-Wilson functional, which is derived from a microscopic Hamil-

tonian, is treated by the strong-disorder renormalization group method. For ohmic

damping, phase transitions are strongly influenced by disorder and the critical point

is an infinite-randomness fixed point, which is in the universality class same as that

of the random transverse-field Ising model. The scaling form of observable quantities

is activated type rather than conventional power-law type. For superohmic damping,

the strong-disorder renormalization group method yields one of the recursion relation-

ships different from ohmic damping. This difference indicates a more conventional

transition for superohmic damping.
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1. INTRODUCTION

The phase change between ice and liquid water is a familiar example of a phase

transition. Phase transitions occur in many diverse systems. Because they are com-

plex phenomena, formulation of a theoretical framework to explain them has been

a challenge for many decades. The tools of statistical mechanics have been used to

understand these many-body phenomena.

A quantum phase transition is a special kind of phase transition observed at ab-

solute zero due to variations in a nonthermal parameter such as pressure or magnetic

field. This chapter explains the basics of phase transitions1 generally and quantum

phase transitions in particular.

1.1. THE BASICS OF PHASE TRANSITIONS

Variations in energy configurations of the constituents of a substance can qual-

itatively change the physical properties2 of that substance. The phases are these en-

ergy configurations, which often correspond to various symmetries, and the changes

in these configurations are phase transitions. Figure 1.1 shows the phases of a typical

fluid substance as a function of pressure and temperature. The solid lines represent

the boundaries between phases. The liquid-gas phase boundary ends at the critical

point C. A phase transition takes place when the system crosses the phase bound-

ary due to variations in the external parameters. Crossing of the phase boundary is

accompanied by singularities in the physical properties of the substance.

In general, phase transitions are classified as either first-order or continuous

(or second-order). In a first-order phase transition, both phases coexist at the phase

boundary. The phase change is accompanied by latent heat3, which is evidence of

abrupt structural changes in the substance. The first derivative of the free energy

with respect to a state variable is discontinuous in a first-order phase transition.

1For more details see, e.g., [1, 2, 3].
2These include, e.g., mechanical, electrical, or magnetic characteristics.
3Latent heat is the heat absorbed by a substance at a constant temperature as it changes from

one phase to another.
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Figure 1.1. Phase diagram of a typical fluid substance as a function of pressure, p,
and temperature, T. Point C denotes the critical point. The dotted arrow
across the solid and the liquid phase shows a first-order phase transition.
The dotted arrow passing through the critical point shows a continuous
phase transition.

The dotted arrow drawn across the solid-liquid phase boundary in figure 1.1 is an

example of a first-order phase transition. It corresponds to the example mentioned

above of ice and liquid water.

The dotted arrow passing through the critical point C in figure 1.1 shows an

example of a continuous phase transition. The two phases (i.e., liquid and gas)

that coexist on the phase boundary become indistinguishable at that point. In such

a transition, the free energy and its first derivative with respect to a state variable

are continuous, and there is no latent heat involved. The ferromagnetic-paramagnetic

phase transition in iron at 1043◦K is another example of a continuous phase transition.

A continuous phase transition is generally characterized by an order parameter

‘φ’, which is a physical quantity that is zero on one side of the critical point and

non-zero on the other. For example, the order parameter of the liquid-gas transition

in figure 1.1 can be the difference between liquid and gas densities. Defining the order

parameter for a phase transition can be difficult.

The spatial and temporal fluctuations of the order parameter are important

in addition to the average of order parameter. These are quantified by a two-point
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correlation function4 :

C(x, τ) ≡ 〈φ(0, 0) · φ(x, τ)〉 − |〈φ〉|2 . (1)

One way to obtain experimental information about a continuous phase transition is

by means of scattering experiments5. The scattering cross-section of probing particles

is proportional to the Fourier transform of the two-point correlation function. As a

system approaches the critical point, order-parameter fluctuations grow in space and

time. These are correlated up to a length called the correlation length6, ξ; likewise,

the typical time scale of order-parameter fluctuations is defined as correlation time,

τc. The length and time scales of order-parameter fluctuations become large at the

critical point. An example is the critical point of CO2 at 304◦K and 73 atm pressure.

The transparent CO2 turns milky as it approaches the critical point. The increasing

length scale of density (i.e., the order parameter) fluctuations eventually becomes

comparable to the wavelength of visible light; consequently, the light is scattered.

This phenomenon is known as critical opalescence [5].

Empirical studies7 of systems approaching a continuous phase transition at

a temperature Tc indicate power-law relationships between observable quantities.

Specifically, the correlation length ξ diverges as |r|−ν , where r is the reduced temper-

ature (r = (T − Tc)/Tc) and ν is the correlation-length critical exponent. Likewise,

the correlation time diverges as

τc ∼ |r|−νz , (2)

where z is the dynamical critical exponent. These and other power laws of observable

quantities (Table 1.1) can be theoretically derived from the scaling hypothesis.

4The notation 〈a〉 represents the thermal average of a. The thermal average of a quantity is the
average at a constant temperature in an equilibrium state.

5For example, see [4].
6The relationship between the two-point correlation function and the correlation length (i.e.,

equation (10)) is addressed in section 1.2 below.
7For instance, see [6, 7, 8, 9].



4

1.2. THE SCALING HYPOTHESIS

The following discussion of the scaling hypothesis considers a magnetic system

that undergoes a ferromagnetic-paramagnetic continuous phase transition. Thermo-

dynamic quantities at the critical point can be derived from the free energy density,

which is given by

f = −
(
kBT

V

)
lnZ , (3)

where V is volume, kB is a Boltzmann constant, T is the temperature, and Z is

the canonical partition function. An example is the magnetic susceptibility χ in the

absence of an external field h :

χ = −
(
∂2f

∂h2

)
h=0

, (4)

or the magnetization in the absence of an external field

m =

(
−∂f
∂h

)
h=0

. (5)

Widom propounded the scaling hypothesis on a phenomenological basis [10].

The hypothesis states that the free energy density of a system sufficiently close to the

critical point has a so-called scaling form

f(r, h) = |r|1/y ψ±(h |r|−(x/y)) , (6)

where the scaling function ψ is a function of only one variable.

The scaling function differs for r > 0 (i.e., ψ+) and r < 0 (i.e., ψ−). Widom

found that the values8 of x and y can be chosen such that the functions ψ± are

identical for apparently dissimilar systems. The scaling hypothesis has played an

important role in the development of the renormalization group9 [11].

8Here, x and y are real numbers.
9The renormalization is the modern theory of critical phenomena. Using the renormalization

group, the scaling form of the free energy can be derived from first principles.



5

Use of the free energy density in equation (6) to calculate the magnetic suscep-

tibility of equation (4) yields the power law

χ = |r|(1−2x)/y ∂
2ψ±(0)

∂h2
. (7)

If this result is compared with experimental observations at the critical point, where

the susceptibility diverges as |r|−γ (see table 1.1), then the susceptibility critical

exponent can be written as γ = 2x−1
y

. In general, a critical exponent describes the

nonanalytic behavior of an observable quantity near the critical point. The critical

behavior of a phase transition is described by a collection of appropriate critical

exponents, which depend on the dimension of the system and the order-parameter,

and on the symmetry of the Hamiltonian. Table 1.1 lists the critical exponents

of a magnetic transition and their defining conditions. Dissimilar systems of equal

dimensions that are characterized by order parameters of the same dimensions have

identical critical exponents. This phenomenon is called universality, which shows that

although microscopic details may be responsible for various phases in a system, they

do not control its critical behavior.

The critical exponents α, β, and δ can be expressed in terms of x and y by taking

a partial derivative of the free energy density (i.e., equation (6)) with respect to a

suitable variable. Since the scaling form of the free energy density contains only two

exponents (i.e., x and y), it leads to different relations among the critical exponents.

Table 1.1. Definitions of the critical exponents in a magnetic phase transition: r is the
reduced temperature, d is the system’s dimension, |x| is a spatial distance,
and h is the external magnetic field.

Critical exponent Definition Condition

ν Correlation length ξ ∝ |r|−ν r → 0 ; h = 0
η Correlation function C(x) ∝ |x|−d+2−η r = 0 ; h = 0

γ Susceptibility χ ∝ |r|−γ r → 0 ; h = 0

α Specific heat c ∝ |r|−α r → 0 ; h = 0
β Order parameter 〈φ〉 ∝ (−r)β r → −0 ; h = 0

δ Critical isotherm h ∝ 〈φ〉δ r = 0 ; h→ 0
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These so-called scaling laws are

α+ 2β + γ = 2 (8)

and

α+ β(δ + 1) = 2 . (9)

The scaling hypothesis of the equal-time two-point correlation function provides

a basis for further discussion of the scaling law :

C(x) =
ϑ±(|x|/|r|−ν)
|x|d−2+η

, (10)

where ν is the correlation-length critical exponent, |x| is a distance, d is the dimension,

and η is the correlation-function critical exponent. The theory of linear response,10

which relates the magnetic susceptibility to the two-point correlation function, gives

the scaling law

(2− η)ν = γ . (11)

The singular part of the free energy density is proportional to ξ−d since the

correlation length is the only useful length at the critical point. This relation gives

the hyperscaling law

νd = 2− α , (12)

which involves the dimension. The hyperscaling law holds below a specific dimension

called the upper critical dimension11.

1.3. QUANTUM PHASE TRANSITIONS

Quantum phase transitions are zero-temperature phase transitions that occur

under variations in an external nonthermal parameter [15, 16, 17]. A quantum phase

10See, e.g., [4, 12].
11Discussed below in section 2.1. More details can be found in [13, 14].
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transition can be a first-order or a continuous phase transition. A phase transition in

which the two distinct degenerate ground states coexist is called a first-order quantum

phase transition.

A continuous quantum phase transition has no special degeneracy as in LiHoF4.

The phase diagram of this substance as a function of temperature and external mag-

netic field is shown in figure 1.2 [18]. The ferromagnetic-paramagnetic phase transi-

tion can occur in two ways: by increasing the temperature at a small external field,

as shown by the solid arrow, or by increasing the external field at a low tempera-

ture, as shown by the dotted arrow. The dotted arrow shows a continuous quantum

phase transition due to quantum fluctuations, which arise from Heisenberg’s uncer-

tainty principle. As the external field increases, quantum fluctuations also increase

and compete with the order in the ferromagnetic phase. They destroy it beyond the

critical point, which results in the paramagnetic phase.

Since quantum phase transitions occur exactly at absolute zero, they cannot be

attained in experiments; nevertheless, the effects of a quantum critical point, such

as unusual power laws or a non-Fermi liquid behavior, can be observed at attainable

temperatures.

1.6

1.2

1.4

(K
)

0.6

0.8

1

Ferromagnet Paramagnet

T

0.2

0.4

0

0 10 20 30 40 50 60

Transverse Magnetic field  (kOe)

Figure 1.2. Magnetic phase diagram of LiHoF4 as a function of temperature and ex-
ternal magnetic field. The solid and dotted arrows show phase transitions
caused by thermal and quantum fluctuations respectively.
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The schematic phase diagram in figure 1.3 shows the non-zero temperature effects

of a quantum critical point. The external tuning parameter for this quantum phase

transition is pressure. Quantum fluctuations dominate the quantum-paramagnetic re-

gion, whereas thermal fluctuations dominate the thermal-paramagnetic region. Both

fluctuations become important in the quantum critical region. The crossover lines be-

tween the quantum critical region and both paramagnetic regions are determined by

comparing the thermal energy kBT and the quantum energy ~ωc. The magnitude of

the quantum energy can be estimated from the typical time scale (i.e., equation (2))

of quantum fluctuations. The dimensionless quantity describing the distance from

the critical point at absolute zero is r = (p− pc)/pc, where pc is the critical pressure.

Since ωc is proportional to 1/τc, the quantum energy is calculated as

~ωc ∝ |r|νz . (13)

Quantum fluctuations are important as long as the quantum energy is greater than

the thermal energy. The boundaries of the quantum critical region are given by the

condition kBT ∼ |r|νz.

Quantum

T Nonuniversal

Quantum
critical

Thermal
paramagnet

Quantum 
paramagnet

ppc

Ferromagnet

Figure 1.3. Phase diagram in the vicinity of a quantum critical point located at pc,
where p is the pressure and T is the temperature. The shaded region is
the classical critical region.
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Exciting the quantum critical ground state by increasing the temperature leads to

unusual behavior in the quantum critical region.

Since thermal fluctuations dominate the shaded phase-boundary region in figure

1.3, this region is described by the classical theory. In such cases, the phase transition

takes place at a finite temperature. Moreover, the quantum energy is less than the

thermal energy, and although quantum fluctuations are present at a microscopic level,

they do not control the critical behavior.

Figure 1.3 corresponds to a transition at which the ordered phase exists at non-

zero temperatures. In some cases, it exists only at absolute zero. The schematic

phase diagram in a such situation is similar to that in figure 1.3; however, the finite-

temperature ferromagnetic region collapses on the pressure axis (see [17]).

The statistical mechanics approaches to classical and quantum phase transitions

are similar. In the case of a classical Hamiltonian, where the kinetic part HK depends

on generalized momenta pi and the potential part HP depends only on the generalized

coordinates qi, the partition function can be written as

Z =

∫ ∏
i

dpie
−HK/kBT

∫ ∏
i

dqie
−HP /kBT . (14)

The kinetic part of the partition function does not usually contribute to the singularity

of the free energy density (i.e., equation (3)) since it has Gaussian terms and the

Gaussian integrals are not singular. Therefore, phase transitions in such systems can

be studied using a time-independent theory such as the Landau-Ginzburg-Wilson

theory12.

The statistical mechanics of a quantum phase transition in d dimension are

closely related to those of a classical phase transition in d+ z dimension13. The map-

ping of a quantum phase transition onto a classical transition introduces an additional

dimension of imaginary time. The reason is that the dynamics and the statics do not

separate from each other for a quantum Hamiltonian in which the kinetic part HK

and the potential part HP do not commute. In such a situation, the partition

12Discussed below in section 2.2.
13This concept is different from application of the classical theory to the shaded phase-boundary

region in figure 1.3.
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function can be rewritten by using Trotter decomposition14, which introduces an ex-

tra dimension of the imaginary time τ = β = −iΘ/~, where Θ is the real time. At a

non-zero temperature transition, the imaginary time has a finite spread, and due to

dominant thermal fluctuations, does not influence the asymptotic critical behavior.

The imaginary time, however, has an infinite spread at a zero-temperature transition.

Therefore, the quantum phase transition in d dimension can be mapped onto a clas-

sical transition in d + z dimension15, and the scaling hypothesis of equation (6) can

be generalized to

f(r, h, T ) = |r|(1/y+z) ψ±

(
h |r|−(x/y) , T |r|−z

)
. (15)

The approach of mapping a quantum phase transition onto a classical phase is

limited to the thermodynamics of a quantum phase transition since it rewrites the

partition function. Other approaches are required to address other features such as

finite-temperature real-time dynamics.

1.4. DISORDER AND DISSIPATION IN PHASE TRANSITIONS

A real solid always contains disorder in the form of lattice defects, imperfec-

tions, or impurities. The following discussion is limited to the simplest kind of dis-

order, which is time independent, it is also known as a quenched or frozen disorder.

Moreover, the disorder is assumed to have no qualitative influence on any of the bulk

phases. Such disorder is called weak or random-Tc disorder. An experimental example

of weak disorder arises from doping of nonmagnetic atoms in a classical ferromagnet.

Under certain circumstances, weak disorder can influence a phase transition.

Harris [21] found a condition under which the effects of weak disorder do not change

critical behavior at a classical critical point. The same condition was later found to

be applicable to quantum critical points. The Harris criterion states that a clean

14The Trotter decomposition [19, 20] simplifies the partition function in imaginary time as follows.

The Trotter formula for operators Â and B̂ is eÂ+B̂ = limN→∞

(
e

Â
N e

B̂
N

)N

. Thus, the kinetic and
potential parts of the Hamiltonian are separated in the quantum case with an additional dimension
of imaginary time.

15The dimension is d + z and not d + 1 because time scales with the length as time∼lengthz.
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critical point is stable against weak disorder if

dν > 2 , (16)

where d is the system dimension and ν is the correlation-length critical exponent.

This condition is derived by considering partial regions of size ξ. Due to disorder,

each region has a somewhat different critical temperature than the bulk critical tem-

perature of the impure system. If the variation in the reduced temperature from

region to region is smaller than the reduced temperature of the clean system (i.e.,

the system without disorder), then order-parameter fluctuations caused by the weak

disorder are suppressed at the phase transition. The central limit theorem gives the

local variation in the reduced system temperature, which is proportional to ξ−d/2.

Using the relationship between r and ξ, the local variation in the reduced system

temperature can be rewritten as rdν/2. Thus, the condition for the suppressed weak

disorder is rdν/2 < r. This condition implies equation (16) at the critical point (i.e.,

r → 0).

In a phase transition, violation of the Harris criterion creates three possibilities:

1. The critical behavior is affected such that the numerical value of the critical

exponent ν changes to meet the criteria. Thus, conventional power law scaling

is observed at the critical point, but with a different value of ν.

2. The disorder destroys the conventional critical behavior. It leads to non-power-

law scaling behavior of the critical exponents. The disorder effects increase

without limit at the critical point, which is called an infinite-randomness critical

point. This scenario is discussed in chapter 3.

3. The disorder can destroy the phase transition completely. The system has in-

dependent regions that undergo phase change at different critical temperatures.

Therefore, the transition is smeared (see [22]) over a temperature range.

Another consequence of disorder is Griffiths phases. An infinite disordered sys-

tem can have large spatial regions with no impurities, and the probability of finding

these regions is exponentially small. These regions, called rare regions, tend to un-

dergo phase transition at the critical temperature of the clean system. The disordered
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Griffiths phase16 [23, 24] is the region in the parameter space between the critical tem-

perature of a clean system and that of an impure system. An ordered Griffiths phase17

also exists in the ordered phase of the transition. The dynamics of rare regions are

slow because they require a change in the order parameter over a large volume. In

the case of a classical system, rare regions contribute to the observed thermodynamic

quantities in the form of a power law within their volume. Because the probability

of finding these regions is exponentially small, the effects of Griffiths phases are weak

in the quantities observed for a classical system; nevertheless, they are important for

the long-term dynamics of a classical system. They are also important in a quan-

tum system, where the contribution of rare regions to the observed quantities can be

exponentially large within their volume.

Apart from disorder, dissipation influences the dynamics of a phase transition.

Thus, order-parameter modes interact with other low-energy modes, creating a kind

of ‘friction force’ similar to the damping force in a harmonic oscillator. Since dynamics

and statics decouple in a classical phase transition, dissipation does not influence the

transition. However, dissipation becomes important in a quantum phase transition in

which dynamics and statics are coupled. Chapter 4 discusses experimental examples

in which the effects of the disorder and the linear damping are apparent.

The reminder of the thesis is organized as follows: Chapter 2 discusses the Lan-

dau theory and presents the Landau-Ginzburg-Wilson theory for the classical Ising

spin model. Chapter 3 addresses the renormalization group method and studies the

strong-disorder renormalization group method by applying it to the transverse-field

Ising model. The main part of the thesis begins with chapter 4, which first describes

experiments involving quantum phase transitions with dissipation and disorder. This

chapter continues discussing the Landau-Ginzburg-Wilson theory suitable for inves-

tigation of these quantum phase transitions. The strong-disorder renormalization

group method is applied to this theory, and recursion relations and flow equations

are derived to find observable quantities. Finally, chapter 5 considers an extension of

the problem in which the Ohmic (i.e., linear) damping in the experimental examples

is replaced by the super-Ohmic damping.

16The Griffiths phase is also known as the Griffiths region.
17For a review of this topic see, e.g., [22, 15]
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2. THE ORDER PARAMETER FIELD THEORY

Initial attempts to describe phase transitions were of the mean-field theory18

kind; that is, the interaction of a particle with the rest of the system was treated

as the interaction with the average local field. The following discusses the Landau

theory, which can be considered a unification of earlier mean-field theories.

2.1. LANDAU THEORY

Landau theory is based on the assumption that for a given phase transition,

the free energy can be written as a power series expansion of the order-parameter’s

thermal average 〈φ〉 [25, 26, 27, 28, 29]. In a continuous phase transition, the order

parameter increases continuously from zero in the ordered phase. In a first-order

phase transition, on the other hand, the order parameter changes discontinuously

at the transition temperature. Because the series expansion is relevant under the

assumption of a small order parameter near the phase transition, the Landau theory

is better controlled for a continuous phase transition than for a first-order phase

transition. The expansion of the Landau free energy FL is

FL = a0 + a2 〈φ〉2 + a3 〈φ〉3 + a4 〈φ〉4 +O
(
〈φ〉5

)
. (17)

The values of parameters a0, a2, a3, and a4
19 are determined by the system’s degrees

of freedom, which exclude the order parameter, and these are dependent on external

parameters such as temperature and pressure. The physical value of the thermal

average of the order parameter is obtained by minimizing the free energy.

18See e.g.,[13]
19The reason for the absence of a first-order term in the free energy expansion is that, depending

on the value of a2, the free energy minimum is located either in the ordered phase or in the disordered
phase. The system’s state is specified by a partial derivative of this absolute minimum, i.e.

∂FL

∂ 〈φ〉
= a1 + 2a2 〈φ〉+ 3a3 〈φ〉2 + ... = 0 .

Since the order parameter vanishes in the disordered phase (i.e., 〈φ〉 = 0), the above equation is
satisfied for the condition a1 = 0; therefore, there is no first-order term in the Landau free energy
expansion.
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The Landau theory describes a first-order phase transition for a3 6= 0. For

a2 > a∗2 (Figure 2.1(a)), where a∗2 is the value of a2 at the phase transition, the

absolute minimum of the free energy is located at 〈φ〉 = 0, and the system is in the

disordered phase. The ordered phase appears as a second local minimum of the free

energy, and at a2 = a∗2, where the Landau free energies of both phases coincide, it

is located at 〈φ〉 6= 0 (Figure 2.1(b)). For a2 < a∗2 (Figure 2.1(c)), the system is in

the ordered phase, and the absolute minimum is located at 〈φ〉 6= 0. In this case, the

system jumps discontinuously from the disordered phase (i.e., 〈φ〉 = 0) to the ordered

phase (i.e., 〈φ〉 6= 0).

The Landau theory describes a continuous phase transition for a3 = 0, which is

usually due to symmetry. The critical point is located at a2 = 0 (Figure 2.2(b)). In

case of a thermal continuous-phase transition, a2 gives the distance from the critical

point (i.e., a2 is proportional to T − Tc). For a2 > 0, the system is in the disordered

phase (Figure 2.2(a)).

FL

<φ>

( )
a2 > a2*

(a)

FL

<φ>

( )
a2 = a2*

(b)

FL

<φ>
a2 < a2*

(c)

2  2

Figure 2.1. Landau free energy in a first-order transition: Landau free energy as a
function of the order parameter’s thermal average at (a) a2 > a∗2, (b)
a2 = a∗2, and (c) a2 < a∗2.
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FL

<φ>
a2 > 0

(a)
a2 > 0

FL

<φ>
a2 = 0

(b)

FLL

<φ>

 

(c)

a2 < 0

Figure 2.2. Landau free energy in a continuous phase transition: Landau free energy
as a function of the order parameter’s thermal average at (a) a2 > 0, (b)
a2 = 0, and (c) a2 < 0.

In equation (17), if the term 〈φ〉5 and higher order terms are disregarded, then the

minimum of free energy is located in the ordered phase at 〈φ〉 = ±
√

−a2

2a4
, as shown in

Figure 2.2(c). Thus, the critical exponent β predicted by the Landau theory is 1/2.

For a non-zero field h, which is conjugate to the order parameter, equation (17) has

an extra term of −h 〈φ〉. The partial derivative of this free energy with respect to the

order parameter’s thermal average then gives

2a2 〈φ〉+ 4a4 〈φ〉3 = h . (18)

Using this equation of state, the Landau theory gives the critical exponents γ, α, and

δ. For example, the magnetic susceptibility can be found by differentiating equation

(18) with respect to h (i.e., χ = ∂ 〈φ〉 /∂h). This differentiation, in turn, gives

χ ∝ |a2|−1 ∝ |T − Tc|−1 . (19)
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Thus, the critical exponent γ predicted by the Landau theory is 1. Similarly, α is

equal to 0 and δ is equal to 3.

The Landau theory uses the order-parameter mean while neglecting order-

parameter fluctuations about the mean. It can fail near the critical point regime,

where order-parameter fluctuations about the mean are significant. The dominance

of fluctuations usually decreases as the system dimension and the number of order-

parameter components increases. Ginzburg found that the Landau theory breaks

down below a certain dimension d+
c , which is the upper critical dimension [30, 31].

This dimension is independent of the number of order-parameter components. There-

fore, magnetic systems of Ising and Heisenberg spin symmetries have the same upper

critical dimension (i.e., d+
c = 4). The lower critical dimension d−c gives the limit below

which no phase transition is observed in the system. In such a case, no long range

order is possible due to strong fluctuations. The lower critical dimension is 1 for the

Ising and 2 for the Heisenberg spin symmetry.

At the phase boundary, fluctuations become important in a system of dimension

d, where d−c < d < d+
c ; accordingly, modifications in the Landau theory become

necessary, as discussed in section 2.2.

2.2. LANDAU-GINZBURG-WILSON THEORY

A theory that includes fluctuations, at least those at the long wavelengths, is

required to describe phase transitions for d < d+
c , the region where the Landau theory

fails. The Landau-Ginzburg-Wilson theory proposes a free-energy functional20 that

considers long-wavelength order-parameter fluctuations. The free-energy functional

can be derived from a microscopic Hamiltonian or developed from symmetry consid-

erations. The following discusses the difference in formalism between a classical and

a quantum Hamiltonian.

20A functional is a function of a function. It is also referred to as an action in the quantum field
theory.



17

The Landau-Ginzburg-Wilson theory of a classical (thermal) transition 21 can

be written as

Z =

∫
D(φ) e−S[φ(x)] =

∏
x

∫
dφ(x) e−S[φ(x)] , (20)

where S[φ(x)] is the Landau-Ginzburg-Wilson functional. For the simplest case of a

scalar order parameter, S[φ(x)] in d dimension is

S[φ(x)] =
1

kBT

∫
ddx [ξ2

0 (∇φ(x))2 + FL(φ(x))] , (21)

where FL(φ(x)) is the Landau free energy, and ξ0 is a microscopic length scale. The

order parameter average φ(x) is defined at the center position x of a cell. The size of

the cell is usually larger than the distance between the particles or the range of their

interaction. In the above functional, rapid order-parameter fluctuations are restricted

by the term (∇φ(x))2. This term is relevant near the critical point, where the order

parameter has long-wavelength fluctuations.

The Landau-Ginzburg-Wilson functional is formulated in space and imaginary

time variables for a quantum Hamiltonian, the kinetic and the potential parts of

which cannot be separated. The partition function is

Z =
∏
x,τ

∫
dφ(x, τ) e−S[φ(x,τ)] . (22)

As an example, the Landau-Ginzburg-Wilson functional for a d dimensional quantum

Hamiltonian could be

S[φ(x, τ)] =

∫ 1
kBT

0

dτ

∫
ddx

[
τ 2
0

(
∂φ(x, τ)

∂τ

)2

+ ξ2
0 (∇φ(x, τ))2 + FL(φ(x, τ))

]
, (23)

where τ0 is a microscopic time scale. The coefficients ξ0 and τ0 depend on the degrees

of freedom other than the order parameter.

21The partition function of this transition can be described by a time-independent formalism of
equation (14) in section 1.3.



18

The Landau-Ginzburg-Wilson functional for the Ising model is derived here as

an example. The Hamiltonian for the classical one-dimensional Ising model of N sites

with no external field is

H = −1

2

∑
ij

Jij SiSj , (24)

where Si, Sj = ±1 are the classical Ising spins at neighboring sites i and j with the

interaction Jij. The partition function, then, is

Z =
∑
±1

e−βH =
∑
±1

e
1
2

∑
ij PijSiSj , (25)

where Pij is equal to βJij. By applying the Hubbard-Stratanovich transformation

[32, 33], the partition function can be written in terms of a classical field φ as

Z = C

∫ ∞

−∞

(
N∏
i=1

dφi

)
e−

1
2

∑
ij φiP

−1
ij φj

∑
±1

e
∑
i φiSi , (26)

where C is equal to (detPij/(2π)N)1/2. Since the spin part is formally noninteracting,

Si can be integrated out, leading to the Landau-Ginzburg-Wilson functional expressed

as

S(φ) =
1

2

∑
ij

φiP
−1
ij φj −

∑
i

ln(2 cosh(φi)) . (27)

The fourier transform of P, where P is an N ×N matrix (the only non-zero elements

of which represent nearest neighbor interaction), is

P̃(q) = 2P cos(qa) ,

where a is the lattice spacing and P is equal to βJ . Therefore, for the long wave-

lengths of the order parameter, P̃
−1

(q) is approximately equal to a2q2/4P , where

the constants are absorbed in the Landau free energy expansion. The second term

of equation (27) can be simplified by expanding the logarithmic term for small val-

ues of φ2/2 in the hyperbolic cosine expansion. Thus, the Landau-Ginzburg-Wilson
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functional in the fourier space is

S[φ(q)] =

∫
dq [ξ′20 (φ(q)q2φ(-q)) + FL(φ(q))] ,

which is equation (21) for d = 1 in the fourier space.

Finding the critical exponents in the Landau theory is simple; however, the

Landau-Ginzburg-Wilson theory has complications of interacting many-particle sys-

tem. The renormalization group is used to solve the functional and thus to obtain

the critical exponents. Chapter 3 discusses the renormalization group method.
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3. STRONG-DISORDER RENORMALIZATION GROUP METHOD

One of the methods used to study a zero-temperature phase transition in the

presence of disorder is the strong-disorder renormalization group method [34]. Ini-

tially, this method was introduced to study random Heisenberg antiferromagnetic

spin chains [35, 36]. The following provides an introduction to renormalization group

methods in general (see, e.g., [37, 4, 38, 39]).

3.1. RENORMALIZATION GROUP METHOD

The renormalization group method is based on the notion that at the critical

point, a system looks identical at all length scales. Correlation-length divergence

at the critical point indicates dominance of long-wavelength order-parameter fluc-

tuations. Essentially, the renormalization group method eliminates the degrees of

freedom that do not contribute to the critical behavior. In other words, the degrees

of freedom contributing to short-wavelength order-parameter fluctuations are elimi-

nated by the coarse graining technique. After eliminating these degrees of freedom,

a new Hamiltonian is written, which retains the old form, but has a reduced number

of degrees of freedom. This new Hamiltonian is subjected to the same procedure

and so on, which reveals the system at various length scales. Recursion relations

that describe the changes in the Hamiltonian’s parameters (i.e., coupling constants)

under coarse graining are derived in this process. Infinite iterations of the recursion

relations are carried out so that the unusual behavior of the system can be observed

in the thermodynamic limit. The system behavior is studied in the parameter space,

where the coupling constants are its axes. In this space, the iterative mapping re-

sults in the flow of the Hamiltonian. At the end of the process, the system may be

found at a fixed point, where the point is mapped onto itself. A fixed point can be

attractive, repulsive, or mixed. If the system starts near an attractive fixed point,

then the iterations bring it back to the fixed point. On the other hand, if the system

starts near a repulsive fixed point, it is driven away from that by the iterations. If the

fixed point is mixed, the system is attracted in one direction and repelled in another

direction. The various phases of the system are represented by stable fixed points. A
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fixed point that is repulsive in one direction and attractive in all other directions is

a critical point. Since the critical point is unstable in only one direction, the system

can be brought to this point by tuning only one parameter. The correlation length

can go to either zero or infinity at a fixed point. The latter case represents the critical

point.

3.2. STRONG-DISORDER RENORMALIZATION GROUP METHOD

Renormalization group methods can be performed either in the Fourier space or

in the real space. The strong-disorder renormalization group method belongs to the

latter case. Although this method is considered a real-space renormalization group

method, it is based on energy considerations. In a real-space renormalization method,

the coarse graining procedure (e.g., in a magnetic system), consists in replacing a

block of a few lattice spins by a single spin. All sites in a system having the disorder

cannot be treated on the same footing. To overcome this problem, the coarse graining

technique is developed such that the degrees of freedom contributing to high-energy

modes are eliminated while the degrees of freedom that contribute to low-energy

modes of the system are retained.

As discussed in section 1.4 above, three types of disorder behavior are possible

in a system under the coarse graining method:

1. The disorder can approach a finite limit, leading the system to a finite-randomness

(or disorder) fixed point.

2. The disorder can increase without limit, leading the system to the fixed point

known as an infinite-randomness fixed point.

3. The disorder can decrease and eventually vanish, leading the system to a clean

fixed point.

The strong-disorder renormalization group method works particularly well in

the second case because it relies on the breadth of the disorder distributions. In the

following discussion, this method is applied to a quantum mechanical toy model for

the magnetic behavior of LiHoF4 [40] to illustrate its operation.
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The Hamiltonian of the transverse-field Ising-spin chain model is given by

H = −
∑
i

Jiσ̂
z
i σ̂

z
i+1 −

∑
i

hiσ̂
x
i , (28)

where Ji > 0 is the coupling (i.e., nearest neighbor interaction) and hi > 0 is the

transverse field at a lattice site i. The quantum spin operators σ̂z and σ̂x are repre-

sented by the Pauli matrices:

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i
i 0

 , σ̂z =

 1 0

0 −1

 . (29)

For the operator σ̂z, Ising spin has two orthogonal eigenstates, |↑〉 and |↓〉. In the

matrix representation, these are

|↑〉 =

 1

0

 , |↓〉 =

 0

1

 . (30)

Likewise, for the operator σ̂x, Ising spin has two orthogonal eigenstates, |→〉 and |←〉,
which can be written as

|→〉 =
|↑〉+ |↓〉√

2
, |←〉 =

|↑〉 − |↓〉√
2

. (31)

The first term in equation (28) represents the interaction between the z components

of neighboring spins. When there is no transverse field (i.e., when hi is equal to 0),

all spins tend be in either the |↑〉 or |↓〉 eigenstate. The result is a ferromagnetic

phase. When the transverse field is turned on (i.e., when hi is not equal to 0),

tunneling is induced between those two eigenstates, an effect that destroys the parallel

spins. Because all spins are pointing in x direction at a sufficiently large field, the

system turns into the paramagnetic phase. The competition between couplings Jis

and fields his at the lattice sites thus leads to paramagnetic-ferromagnetic quantum

phase transition.

The following discussion considers a disordered version of this model, that is, a

model in which hi and Ji are drawn from some random distribution. The procedure

for applying the strong-disorder renormalization group method to this model is as
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follows [40, 41]: The first step is to identify the largest local energy in the system (i.e.,

Ω = max(Ji, hi)). Among all Ji and hi of the Hamiltonian, the largest is considered

first. The largest energy can be either a coupling between any two neighboring sites

or a field at a site. If a coupling e.g., J3 is the largest energy, the next step is to find

the ground state of the associated cluster. The unperturbed Hamiltonian −J3σ̂
z
3σ̂

z
4

has a twofold degenerate ground state. The degenerate ground eigenstates are |↑↑〉
and |↓↓〉. The field terms at sites 3 and 4 ( i.e., −h3σ̂

x
3 − h4σ̂

x
4 ) are treated by

the second-order degenerate perturbation theory. The excited states involving the

coupling are then eliminated, and the new Hamiltonian is written with a reduced

number of degrees of freedom. Thus, the excited states of the cluster |↑↓〉 and |↓↑〉
involving J3 are eliminated. Consequently, the spins at sites 3 and 4 are collectively

treated as a single spin with a magnetic moment equal to the sum of the magnetic

moments of the combined spins. Using this effective spin, the new Hamiltonian is

written as −h̃3σ̂
x
3 with the field h̃3 given by

h̃3 ≈
h3h4

J3

. (32)

For the effective spin, the spin operator in the transverse direction x is assumed to

be the same as that of the spin at site 3. Likewise, the spin operator along the z

direction is assumed to be similar to that of the spin at site 3. The Hamiltonian

for the couplings of the effective spin is then written as −J2σ̂
z
2σ̂

z
3 − J4σ̂

z
3σ̂

z
5. These

assumptions are valid if J3 is much greater than h3 and h4. Hence, a Hamiltonian

is obtained with a reduced number of degrees of freedom and a lower value of the

maximum energy Ω.

If a field e.g., h3 is the largest energy in the system, then the unperturbed

Hamiltonian is −h3σ̂
x
3 . The couplings between sites 3 and 2, and those between

sites 3 and 4 ( i.e., −J2σ̂
z
2σ̂

z
3 − J3σ̂

z
3σ̂

z
4) are treated by the second-order degenerate

perturbation theory. The spin at site 3 is then eliminated, along with its excited state

|←〉 involving the field. Consequently, the spins at sites 2 and 4 are joined by the

effective coupling J̃2, where

J̃2 ≈
J2J3

h3

. (33)
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Thus, as in the earlier case, the process yields a new Hamiltonian with a reduced

number of degrees of freedom and a lower value of Ω. These steps are repeated ad

infinitum.

If a coupling is the largest energy, its elimination favors cluster formation.

Therefore, the iterative procedure of eliminating couplings leads to growth of the

cluster size while the maximum energy of the system goes to zero. These conditions

lead the system to the ferromagnetic phase. A cluster of infinite size is formed at

Ω = 0. In contrast, if a field is the largest energy, its elimination hinders cluster

formation. Thus, the iterative procedure of eliminating fields does not form a cluster,

and with Ω tending to 0, the system goes into the paramagnetic phase.

The probability distribution functions of ln J and lnh change with the recursion

relations (32) and (33). The flow equations for these distributions under repeated

elimination of couplings and fields can be derived as explained in [41]. The solution

of the flow equations gives three kinds of nontrivial fixed points, among which is a

line of fixed points representing the quantum Griffiths paramagnet and another one

representing the quantum Griffiths ferromagnet. The fixed point, which separates

these two lines, is the quantum critical point.

At the critical point, the length scale L of a surviving cluster is given by

Lψ ≈ ln

(
Ω0

Ω

)
, (34)

where Ω0 is the initial energy of the system and ψ is the so-called tunneling critical

exponent defined by

τc ∝ exp ξψ . (35)

In this model, ψ is equal to 1/2. The correlation-length scaling law is given by

ξ ≈ |r|−ν . The distance from the critical point r is defined as

r =
lnh− ln J

var (lnh) + var (ln J)
, (36)

where lnh and ln J are the averages and var (lnh) and var (ln J) are the variances of

the probability distribution functions. In this model, ν is equal to 2. Near the
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infinite randomness critical point, the width of probability distributions of the cou-

pling constants tend to infinity, justifying the method. If the spins are located at

a specific distance, the resulting spin-spin correlation functions differ for those be-

longing to different clusters and for those belonging to a single cluster. This result

causes variations in the typical and average values of physical quantities. Chapter 4

elaborates on these results, deriving recursion relations similar to equations (32) and

(33).
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4. DISORDER AND DAMPING IN QUANTUM PHASE TRANSITION

The main topic of the thesis is discussed in this chapter. The initial discussion

is about the motivation for this study of quantum phase transitions with disorder and

ohmic damping.

4.1. THE EXPERIMENTAL MOTIVATION

Following are three examples of quantum phase transitions exhibiting complex

phenomena, including non-Fermi liquid behavior22 of observable quantities at low

temperatures.

4.1.1. Quantum phase transition in CePd1−xRhx. The tuning pa-

rameter of the quantum ferromagnetic-paramagnetic transition in CePd1−xRhx (i.e.,

cerium-palladium-rhodium) is chemical composition. Figure 4.1 shows a temperature-

concentration phase diagram of this substance [44]. Pure CePd undergoes a thermal

ferromagnetic-paramagnetic transition at 6.6◦K.

22An extensive list of experiments in non-Fermi liquid behavior can be found in [42, 43].
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Figure 4.1. Magnetic phases of CePd1−xRhx as a function of temperature and
rhodium concentration. Various techniques for measuring critical tem-
perature measurements are listed. The phase boundary has an unusual
shape beyond a rhodium concentration of 0.65. (Reprinted figure with
permission from J. G. Sereni, T. Westerkamp, R. Küchler, N. Caraco-
Canales, P. Gegenwart, and C. Geibel, Physical Review B, 75, 024432
(2007). Copyright (2007) by the American Physical Society.)
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Rhodium forms a nonmagnetic ground state with the cerium; therefore, the ferro-

magnetic phase of the substance gets suppressed as the concentration of rhodium

increases and that of palladium decreases. The shape of the phase boundary is un-

usual beyond a 0.65 concentration of rhodium. The apparent quantum critical point,

xcr, is at a concentration of approximately 0.87. Figure 4.2 shows the susceptibility

measurements as a function of temperature for various concentrations in the tail of the

ferromagnetic phase [45]. The susceptibility can be fitted above the phase boundary

by a nonuniversal power law, which is predicted by the quantum Griffiths scenario23.

In this quantum phase transition, the disorder is due to random positions of the

rhodium atoms; the magnetization modes are damped by the conduction electrons

because the system is metallic in both phases.

4.1.2. Quantum phase transition in Ni1−xVx. Nickel undergoes a thermal

ferromagnetic-paramagnetic transition at 630◦K. The critical temperature drops as

the concentration of vanadium increases and that of nickel decreases.

23See section 1.4.
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Kassis, Thomas Vojta, and Almut Schroeder, Physical Review Letters,
104, 066402 (2010). Copyright (2010) by the American Physical Society.)

The system undergoes a quantum phase transition at a vanadium concentration of

11.4%, as shown in figure 4.3. Figure 4.4 [46] shows the susceptibility of Ni1−xVx as

a function of temperature for various Vanadium concentrations. For temperatures

above 10 K, the susceptibility can be described by nonuniversal power law (i.e., χ is

proportional to T−γ). The disorder in this system arises from random positions of

vanadium atoms, and the damping of magnetization modes is caused by conduction

electrons.

4.1.3. Quantum phase transition in a superconducting nanowire.

Extremely thin nanowires made for example of MoGe, undergo a quantum phase

transition from a metallic to a superconducting state as a function of their thickness

[47, 48]. The magnetic impurities on the surface of the wire are believed to destroy the

superconducting phase. In this transition, the disorder arises from random positions

of magnetic impurities on the wire surface, and the damping of pairing modes is again

caused by conduction electrons.
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Figure 4.4. Magnetic susceptibility of Ni1−xVx as a function of temperature near the
critical concentration of Vanadium. (Reprinted figure with permission
from Sara Ubaid-Kassis, Thomas Vojta, and Almut Schroeder, Physical
Review Letters, 104, 066402 (2010). Copyright (2010) by the American
Physical Society.) The dotted lines show power laws for T > 10◦K. The
solid lines represent a model that sums the Curie term and the quantum
Griffiths law (see [46] for more details).

4.2. LANDAU-GINZBURG-WILSON THEORY

The following derives from a single-band electron model the Landau-Ginzburg-

Wilson functional for a quantum phase transition in the presence of disorder and

damping. The discussion focuses first on the origin of single-band model 24 and the

motivation for using this model.

4.2.1. The Anderson and Kondo models. The transition metal (lan-

thanides and actinides) compounds studied here usually have more than one electron

band close to the Fermi surface. In such compounds, these bands could be an s-band

and a d-band. Anderson proposed a model to describe the interplay between two

such bands in the presence of Coulomb interaction. This so-called periodic Anderson

model or s− d model25 cannot be solved, therefore, a single impurity is considered to

simplify the problem. The single-impurity Anderson model [52] considers magnetic

moment formation caused by doping a single impurity in a nonmagnetic metal. The

24See, e.g., [49, 50]
25See, e.g., [51]
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model treats valance electrons of the host metal as a band. An impurity is treated

as a localized electron orbital that can be occupied by up to two electrons. The

Hamiltonian of this model is

H =
∑
ks

εkC
†
ksCks +

∑
s

εd nds +
∑
ks

Vkd

(
C†

kscds + c†dsCks

)
+ U nd↑nd↓ , (37)

where C†
ks and c†ds are creation operators that create an electron of spin s in k state

of conduction band and the impurity state d respectively. Likewise, Cks and cds are

annihilation operators that destroy an electron of spin s in the band and the impurity

state. The term εk is the band-electron energy in k state. An impurity electron has

energy of εd. Its number operator, nds, is equal to c†dscds. The term Vkd, which is a

hybridization, represents a transition of an electron between the impurity state and

a k state. The Coulomb interaction between the electrons in the impurity state is

given by

U =

∫
dx1 dx2 |φd(x1)|2

e2

|x1 − x2|
|φd(x2)|2 , (38)

where the orbital wave function is represented by φd(x).

Hubbard estimated magnitudes of interactions between electrons in the impurity

state [53]. The single-impurity Anderson model considers Coulomb repulsion between

impurity electrons. This repulsion favors formation of local moments. The model

discards both the Coulomb interaction between the impurity electrons at neighboring

sites and the exchange interaction26.

Formation of local moments and the resulting characteristics of a metal at low

temperatures differ from those at high temperatures. This distinction is caused by the

spin interaction between an impurity electron and a band electron. Hence, the model

proposed by Kondo for this low temperature phenomenon discards charge fluctuations

in the impurity state and considers only spin fluctuations. The Hamiltonian of this

26The electron exchange interaction results from electrons of similar spin orientations exchanging
their spatial coordinates (see, e.g., [54]).
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model is

H =
∑
ks

εkC
†
ksCks −

∑
k,k′

Jk,k′

(
C†

kσ̂Ck′

)
·
(
c†dσ̂cd

)
, (39)

where σ̂ is equal to 1
2
[x̂σ̂x + ŷσ̂y + ẑσ̂z] and ~ is equal to 1. The terms σ̂x, σ̂y, and σ̂z

are Pauli matrices. A singlet state formed by the interaction between a conduction

band electron and an impurity electron at low temperatures is called the Kondo effect.

Here the Kondo effect is assumed to be present at low temperatures in a quantum

phase transition.27 This effect leads to the formation of heavy quasi-particles, which

bear spins of impurity electrons, near the Fermi surface. These particles possess

degrees of freedom relevant to the quantum phase transition. Hence, a single-band

model of these particles is used to represent the problem.

4.2.2. Derivation of the Landau-Ginzburg-Wilson functional for fer-

romagnetic quantum phase transition. The standard techniques of [57, 58, 59]

are used here to derive the Landau-Ginzburg-Wilson functional from a single-band

microscopic model of interacting electrons. The steps of this derivation are outlined

in section 2.2 above. Although, Hamiltonian formalism [57] can be used to derive

this functional, the partition function representation in terms of Grassman fields [60]

provides a more convenient approach. The partition function is

Z =

∫
Dψ̄i(x, τ) Dψi(x, τ) e

−S ,

where ψ̄i(x, τ) and ψi(x, τ) are Grassman fields (i.e., anticommuting numbers) defined

at a position x and imaginary time τ with spin state i, which can be ↑ or ↓. The term

Dψ̄i(x, τ) Dψi(x, τ) is the Grassman functional integral measure. The functional S is

the sum of functionals for free fermions S0 and their interaction28 SI given by

S0 =

∫
dx

∫ β

0

dτ

[
ψ̄i(x, τ)

(
∇2

2m
+ µ

)
ψi(x, τ) + ψ̄i(x, τ)

∂

∂τ
ψi(x, τ)

]
(40)

27There are systems in which the Kondo effect is not observed at low temperatures. On this topic,
see reviews [55, 56].

28Since the derivation here is for a ferromagnetic-paramagnetic transition, it considers only the
spin-triplet interaction, which results in the ferromagnetic phase. This formulation omits spin-singlet
and Cooper pair interactions [61]. The field theory derivation for a ferromagnet differs for a Fermi
liquid from that for a Fermi gas [62, 63]; for simplicity, here the derivation is only for a Fermi gas.
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and

SI = u

∫
dx

∫ β

0

dτ n↑(x, τ)n↓(x, τ) , (41)

wherem, which is set equal to 1, is the mass of an electron, µ is the chemical potential,

β is equal to 1/kBT , and u is a constant. The number density ni is equal to ψ̄iψi.

Use of equation (A.1) in the continuum space expresses equation (41) as

SI = u′
∫

dx

∫ β

0

dτ ns(x, τ) · ns(x, τ) , (42)

where ns(x, τ) is a spin-density vector and u′ is a constant.

The thermal average of contribution of spin-triplet interaction to the functional

is given by

〈e−SI 〉S0 =

∫
Dψ̄i(x, τ) Dψi(x, τ) e

−S0 e−SI∫
Dψ̄i(x, τ) Dψi(x, τ) e−S0

.

If Z0 is equal to
∫

Dψ†
i (x, τ) Dψi(x, τ) e

−S0 , then the partition function is

Z = Z0 〈e−SI 〉S0 .

Because Z0 does not contribute to critical behavior, the singular part of the partition

function is

Z ≈ 〈e−SI 〉S0 . (43)

The spin-triplet interaction is decomposed using the Hubbard-Stratanovich trans-

formation, as shown in section 2.2 above. This decomposition yields the thermal

average in terms of an order-parameter field, ϕ(x, τ):

〈e−SI 〉S0 =

∫
dϕ(x, τ) dϕ∗(x, τ)e−

∫
dx

∫ β
0 dτ |ϕ(x,τ)|2〈e−

√
u′

∫
dx

∫ β
0 dτ ns(x,τ)·ϕ(x,τ)〉S0 .

Use of expansion in terms of cumulants (i.e., equation (B.1)) simplifies the thermal
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average. Because for noninteracting fermions〈
−
∫

dx

∫ β

0

dτ
√
u′ ns(x, τ) · ϕ(x, τ)

〉
S0

= 0 ,

the partition function is equal to∫
dϕ(x, τ) dϕ∗(x, τ)e−

∫
dx

∫ β
0 dτ |ϕ(x,τ)|2+2u′〈

∫
dxdx′ ∫ β

0 dτ dτ ′ ϕ(x,τ)·ns(x,τ)ns(x′,τ ′)·ϕ(x′,τ ′)〉S0 .. .

The Fourier transform of the order-parameter field is given by

ϕ(x, τ) = T
∑
ωn

∫
dqφ(q, ωn) e

−i(q·x−ωnτ) , (44)

where ωn is a Matsubara frequency, which is equal to 2nπ/β. Thus, the partition

function in Fourier space is

Z =

∫
dφ(q, ωn) dφ∗(q, ωn)e

−T
∑
ωn

∫
dq [(1−2u′ χ(q,ωn)) |φ(q,ωn)|2]+ u

2N
|φ(q,ωn)|4 ,

which considers the expansion up to the fourth cumulant. The reference-system

dynamic susceptibility χ is given by

χ(q, ωn) =

∫
dx′′

∫ β

0

dτ ′′ 〈ns(x, τ) · ns(x′, τ ′)〉S0e
−i(q·x′′−ωnτ ′′) , (45)

where x′′ is equal to x−x′, and τ ′′ is equal to τ−τ ′. The reference ensemble consists of

free fermions. Hence, the derivation of dynamic susceptibility (in appendix E below)

is easy within the relevant limits of ferromagnetic quantum phase transition. Thus,

the partition function of the Landau-Ginzburg-Wilson theory is equal to

∫
dφ(q, ωn) dφ∗(q, ωn)e

−T
∑
ωn

∫
dq

[
1−8u′π2α

(
3KF

2
− q2

8KF
−π|ωn|

q

)]
|φ(q,ωn)|2+ u

2N
|φ(q,ωn)|4

.

(46)

The distance from the critical point for this transition is defined as

r = 1− 12π2u′αKF ,
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which reproduces the Stoner criterion [64]. For r greater than 0, the system is in a

paramagnetic phase and for r less than 0, the system is in a ferromagnetic phase. The

order-parameter-modes damping coefficient γ in this transition is equal to 8π3u′α/q

and the microscopic length ξ0 is equal to u′π2α/KF . Thus, the Landau-Ginzburg-

Wilson functional for ferromagnetic-paramagnetic quantum phase transition is

S = T
∑
ωn

∫
dq ( r + ξ0q

2 + γ|ωn| ) |φ(q, ωn)|2 +
uT

2N

∑
ωn

∫
dqφ4(q, ωn) . (47)

4.2.3. Landau-Ginzburg-Wilson functional for antiferromagnetic quan-

tum phase transition. The derivation of the Landau-Ginzburg-Wilson functional

for antiferromagnetic quantum phase transition is similar to that for the ferromag-

netic quantum phase transition. The antiferromagnet-paramagnet phase transition is

observed at a nonzero wave vector Q at which the dynamic susceptibility has a peak.

Thus, the expansion of dynamic susceptibility in terms of q′, which is equal to q−Q,

and ωn is necessary. This expansion yields the Landau-Ginzburg-Wilson functional:

S = T
∑
ωn

∫
dq′ ( r + ξ0q

′2 + γ|ωn| ) |φ(q′, ωn)|2 +
uT

2N

∑
ωn

∫
dq′ φ4(q′, ωn) . (48)

The Landau-Ginzburg-Wilson functional in equation (48) is for the phase tran-

sition without disorder. The disorder in this functional is introduced by making the

distance from the critical point r, the damping coefficient γ, the microscopic length

scale ξ0, and the coefficient u random functions of spatial position.

4.2.4. Modifications to the Landau-Ginzburg-Wilson functional.

Modifications to the Landau-Ginzburg-Wilson functional are necessary for application

of the strong-disorder renormalization group method. The functional is expressed in

discrete space because the strong-disorder renormalization group method is a real-

space method. To make this modification, rotor variables29 are introduced to

29A rotor is not observed in nature; it is a mathematical construction. It represents the effective
degrees of freedom of the low-energy states of a small number of fermions with strong interactions.
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represent the order-parameter average over a volume centered at a specific site30. The

spatial gradient of the order-parameter field appears as an interaction Jij between

neighboring sites.

The second modification concerns the number of order parameter components

N . Although the physical value of this number is 3, the strong-disorder renormaliza-

tion group calculations are performed within the limit of large N . The fixed point

of the strong-disorder renormalization group method is shown31 identical for all N

greater than 1. For a large N , the quartic term in equation (48) can be replaced by

the length constraint on the order-parameter component at each site:

〈
|ϕkj (τ)|2

〉
= 1 , (49)

where k represents the order-parameter component index. The Lagrange multiplier λi

introduces this constraint in the Landau-Ginzburg-Wilson functional, which expresses

the functional as

S =T
∑
i

∑
ωn

( ri + λi + γi|ωn| ) |φi(ωn)|2

− T
∑
〈i,j〉

∑
ωn

φi(−ωn) Jij φj(ωn) . (50)

4.2.5. A single-site solution. The Landau-Ginzburg-Wilson functional for

a single site is

Ssingle-site = T
∑
ωn

( r + λ+ γ|ωn| ) |φ(ωn)|2 .

The Lagrange multiplier λ for a single site is given by the length constraint:

〈
|ϕ(τ)|2

〉
= 1 . (51)

Use of the Fourier transform (i.e., equation (44)) yields the length constraint in terms

30So far, the indices i and j have been used to represent spin states; henceforth, they will represent
sites in the discrete space.

31See subsection 4.5.3.
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of φ(ωm):

T 2
∑
ωm

〈
|φ(ωm)|2

〉
= 1. (52)

The order-parameter average is

〈
|φ(ωm)|2

〉
=

∫
dφ(ωn) dφ∗(ωn) |φ(ωm)|2 e−T

∑
ωn

(r+λ+γ|ωn|) |φ(ωn)|2∫
dφ(ωn) dφ∗(ωn) e

−T
∑
ωn

(r+λ+γ|ωn|) |φ(ωn)|2 .

Integrals in the above equation split for a frequency ωm:∫
dφ(ωm) dφ∗(ωm) |φ(ωm)|2 e−T (ε+γ|ωm|) |φ(ωm)|2∫

dφ(ωm) dφ∗(ωm) e−T (ε+γ|ωm|) |φ(ωm)|2

×
∫

dφ(ωn) dφ∗(ωn) e
−T

∑
ωn6=m

(ε+γ|ωn|) |φ(ωn)|2∫
dφ(ωn) dφ∗(ωn) e

−T
∑
ωn6=m

(ε+γ|ωn|) |φ(ωn)|2 ,

where ε is equal to r+λ. Use of equation (C.3) to solve the first term in this equation

yields the order-parameter average:

〈
|φ(ωm)|2

〉
=

1

T (ε+ γ|ωm|)
. (53)

The single-site constraint from equations (52) and (53) is

T
∑
ωm

1

ε+ γ|ωm|
= 1 . (54)

At absolute zero, the above summation can be transformed into an integral:

1

2π

∫ Λ

−Λ

dωm
(ε+ γ|ωm|)

= 1 ,

where Λ is a microscopic cut-off frequency. Thus, the solution is ln
(
1 + γΛ

ε

)
= πγ .

Because γΛ/ε is much greater than 1, this equation yields the relationship between

the effective distance from the critical point ε and the damping coefficient γ:

ε = γΛe−πγ . (55)



37

4.3. APPLICATION OF THE STRONG-DISORDER

RENORMALIZATION GROUP METHOD

Recursion relationships are derived here by applying the strong-disorder renor-

malization group method to the Landau-Ginzburg-Wilson functional (i.e., equation

(50)) in a one-dimensional system32. They show changes in the coupling constants

during the elimination process for degrees of freedom contributing to higher energies.

The coupling constants, which are a local distance from the critical point εi and a

bond Jij, are the competing energies in the system. Following the steps outlined in

subsection 3.2.1 for the strong-disorder renormalization group method, the largest

local energy Ω = max (εi, Jij) is first identified. Of the two cases of Ω, the first to be

discussed here is that of Ω equal to the effective distance from the critical point at

site 2.

4.3.1. Decimation of a site. If ε2 is much greater than J12 and J23, the

rotor φ2 does not contribute to the order-parameter field. The large local energy, ε2,

inhibits polarization of this rotor. Hence, it is eliminated in the perturbation theory

treatment, as shown in figure 4.5.

32The generalization of recursion relationships to higher dimensions is straight forward.
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Figure 4.5. Decimation of a site for a large ε.
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The partition function for the cluster of sites 1, 2, and 3 is

Z =

∫
dφ∗1(ωn) dφ1(ωn) dφ2(ωn) dφ∗2(ωn) dφ∗3(ωn) dφ3(ωn) e

−(S0+S1) ,

where

S0 = T
∑
ωn

(ε2 + γ2|ωn|) |φ2(ωn)|2

and

S1 = −T

[∑
ωn

φ1(−ωn) J12 φ2(ωn) +
∑
ωn

φ2(−ωn) J23 φ3(ωn)

]
.

Elimination of the rotor φ2 by carrying out Gaussian integral over φ2(ωn) and φ∗2(ωn)

yields the partition function:

Z̃ =

∫
dφ∗1(ωn) dφ1(ωn) dφ∗3(ωn) dφ3(ωn) e

T
∑
ωn

φ1(−ωn) J̃13 φ3(ωn) ,

where sites 1 and 3 are connected by an effective interaction J̃13. The method of

cumulant expansion (i.e., equation (B.1)) is used to find this interaction. Thus,

−T
∑
ωn

φ1(−ωn) J̃13φ3(ωn) = − ln
〈
eS1
〉

0

= −〈S1〉0 −
1

2

(〈
S2

1

〉
0
− 〈S1〉20

)
+O(S3

1) , (56)

where 〈S1〉0 implies the average of S1 with respect to S0. The first term of the

expansion is

〈S1〉0 =
−T

∑
ωn
φ1(−ωn) J12

∫
dφ2(ωn) dφ∗2(ωn)φ2(ωn) e

−S0∫
dφ2(ωn) dφ∗2(ωn) e

−S0

−
T
∑

ωn
φ3(ωn) J23

∫
dφ2(ωn) dφ∗2(ωn)φ2(−ωn) e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

.
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Because the integrals in numerators run from −∞ to +∞, they vanish due to sym-

metry. Therefore,

〈S1〉0 = 0. (57)

Because

S2
1 = T

∑
ωn

|φ1(ωn)|2 J2
12 |φ2(ωn)|2 + |φ2(ωn)|2 J2

23 |φ3(ωn)|2

+ 2φ1(−ωn) J12J23 φ3(ωn)|φ2(ωn)|2 ,

the average, 〈S2
1〉0, in the second term of the expansion is

〈
S2

1

〉
0

=
T
∑

ωn
|φ1(ωn)|2 J2

12

∫
dφ2(ωn) dφ∗2(ωn) |φ2(ωn)|2 e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

+
T
∑

ωn
|φ3(ωn)|2 J2

23

∫
dφ2(ωn) dφ∗2(ωn) |φ2(ωn)|2 e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

+
2T
∑

ωn
φ1(−ωn) J12J23 φ3(ωn)

∫
dφ2(ωn) dφ∗2(ωn) |φ2(ωn)|2 e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

.

Use of this result in equation (C.3) yields

〈
S2

1

〉
0

= T
∑
ωn

[
J2

12 |φ1(ωn)|2

ε2 + γ2|ωn|
+
J2

23 |φ3(ωn)|2

ε2 + γ2|ωn|
+

2J12J23 φ1(−ωn)φ3(ωn)

ε2 + γ2|ωn|

]
. (58)

The first two terms in this equation provide a subleading correction to ε1 and ε3. The

last term gives the effective interaction between the rotors at sites 1 and 3, which were

interacting with rotor φ2. Its denominator can be simplified in the low frequency limit

(i.e., γ2|ωn|/ε2 is much less than 1) as

1

ε2 + γ2|ωn|
=

1

ε2

(
1− γ2|ωn|

ε2
+

(
γ2|ωn|
ε2

)2

− ....

)
.

The denominator is then

1

ε2 + γ2|ωn|
≈ 1

ε2
(59)
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in the low frequency limit. Thus,

J̃13 ≈
J12 J23

ε2
, (60)

which is derived by discarding higher-order cumulants in equation (56) and using

equations (57), (58), and (59).

4.3.2. Decimation of a bond. If the largest local energy is the bond J23,

then J23 is much greater than ε2 and ε3 in a cluster of sites 2 and 3. Therefore, rotors

φ2 and φ3 tend to be parallel and contribute to the order-parameter field as if there

were only one rotor, φ̃2, as shown in figure 4.6. The functional of the cluster is

S = T
∑
ωn

−φ2(−ωn) J23 φ3(ωn) + (ε2 + γ2|ωn|) |φ2(ωn)|2 + (ε3 + γ3|ωn|) |φ3(ωn)|2 .

(61)

The mixed terms of rotors φ2 and φ3 in the functional are simplified by transforming

the functional into the eigenbasis of ψ+ and ψ−. The matrix form of equation (61) is

S = T
∑
ωn

(
φ2(−ωn) φ3(−ωn)

) α2 −J23

2

−J32

2
α3

 φ2(ωn)

φ3(ωn)

 ,

where α2 is equal to ε2 + γ2|ωn| and α3 is equal to ε3 + γ3|ωn|.

1ε 2ε 3ε 4ε1 2

12J

3 4

34J23J

2 3

23J
ε ε

ε = 4ε1ε
23J

34J12J

Figure 4.6. Decimation of a bond for a large J .
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Eigenvalues and eigenvectors of above matrix are

E+ =
(α2 + α3) +

√
(α2 − α3)2 + J2

23

2
,

E− =
(α2 + α3)−

√
(α2 − α3)2 + J2

23

2
(62)

and

ψ+ = cos

(
θ

2

)
φ2(ωn) + sin

(
θ

2

)
φ3(ωn) ,

ψ− = sin

(
θ

2

)
φ2(ωn) + cos

(
θ

2

)
φ3(ωn) (63)

respectively, where tan θ is equal to J23/(α3 − α2). Therefore, the functional (i.e.,

equation (61)) in the new basis is

S ′ = T
∑
ωn

E+|ψ+(ωn)|2 + E−|ψ−(ωn)|2. (64)

Expansion of equation (62) yields the energy eigenvalue E−

E− =
α2 + α3 − J23

2
− (α2 − α3)

2

2J23

+ . . . .

The higher order terms in above expansion can be discarded for J23 much greater

than ε2 and ε3. Thus, the damping coefficient and the effective distance from critical

point are

γ̃ = γ2 + γ3

and

ε̃ = ε2 + ε3 − J23

respectively. Definition of two variables, X1 = ε2 − J23

2
and X2 = ε3 − J23

2
, yields the
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product of ε2 and ε3:

ε2ε3 = X1X2 +
ε̃J23

2
+
J2

23

4
.

Because the term X1X2 is much less than ε̃, the effective distance from the critical

point is

ε̃ ≈ 2
ε2ε3 − J2

23/4

J23

. (65)

Appendix F implements the length constraint at sites 2 and 3 to reduce equation (65)

to

ε̃ ≈ 2
γ2γ3Λ

2e−π(γ2+γ3)

J23

. (66)

The right hand side of this equation is a product of the single-site constraint (i.e.,

equation (55)) at sites 2 and 3. Hence, the effective distance from the critical point

is

ε̃ ≈ 2
ε02ε

0
3

J23

, (67)

where ε02 is equal to γ2Λe
−πγ2 and ε03 is equal to γ3Λe

−πγ3 [65, 66]. Though this

recursion relationship differs from equation (32) by a factor of 2, ε̃ is always less than

ε02 and ε03 if J23 is much greater than ε02 and ε03. Thus, the general form of recursion

relationships for the decimation of sites and bonds is

J̃i−1,i+1 ≈
Ji−1,i Ji,i+1

εi

ε̃ ≈ 2
ε0i ε

0
i+1

Ji,i+1

.

The result of above decimation procedures is removal of a site and reduction in the

maximum energy scale Ω. These decimations are iterated ad infinitum.
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4.4. FLOW EQUATIONS AND THEIR SOLUTION

Derivation of flow equations, which result from the above recursion relationships,

is possible only for a one-dimensional system. Decimation of a site and decimation

of a bond are statistically independent, therefore, flow equations are derived for the

probability distributions of variables J and ε, which are P and R respectively.

4.4.1. Flow equations. The recursion relationships are multiplicative.

Hence, formulation of flow equations is convenient in terms of logarithmic variables,

which are

ζ = ln

(
Ω

J

)
, β = ln

(
Ω

ε

)
, and Γ = ln

(
ΩI

Ω

)
, (68)

where ΩI is the system’s initial energy scale, which is reduced in the renormalization

procedure. The energy scale Ω is reduced to a final energy scale Ω − dΩ during

elimination of all rotors and bonds for which Ω > ε > Ω− dΩ and Ω > J > Ω− dΩ.

Thus, the energy scale changes from Γ to Γ + dΓ during decimations for which

recursion relationships in equations (60) and (67) are redefined as ζ̃ = ζ2 +ζ3 and β̃ =

β2 +β3 respectively. The following discusses variations in the probability distribution

functions due to these recursion relationships. The probability distribution function

P (ζ,Γ) of bonds varies due to decimation of sites:

P (ζ̃ ,Γ + dΓ) =

{
P (ζ,Γ)− dΓR(0,Γ)P (ζ,Γ)

∫
dζ2 P (ζ2,Γ)

− dΓR(0,Γ)P (ζ,Γ)

∫
dζ3 P (ζ3,Γ)

+ dΓR(0,Γ)

∫
dζ2

∫
dζ3 P (ζ2,Γ)P (ζ3,Γ)δ(ζ̃ − ζ2 − ζ3)

}
×
[
1− dΓ(P (0,Γ) +R(0,Γ))

]−1
, (69)

where P (ζ̃ ,Γ + dΓ) and P (ζ,Γ) are the respective probability distribution functions

after and before the decimation. The term R(0,Γ) represents the probability distri-

bution function at ε2 = Ω. The second and third terms in the curly brackets come
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from the elimination of J12 and J23 respectively. The fourth term in the curly brackets

comes from the addition of bond J̃13. The multiplying term is for normalization of

distribution functions.

Because dΓ(P (0,Γ) +R(0,Γ)) is much less than 1, the normalizing factor is

[1− dΓ(P (0,Γ) +R(0,Γ))]−1 ≈ [1 + dΓ(P (0,Γ) +R(0,Γ))] .

Because
∫

dζ2P (ζ2,Γ) and
∫

dζ3P (ζ3,Γ) are both equal to 1, equation (69) can be

reduced to

P (ζ̃ ,Γ + dΓ) =

{
P (ζ,Γ)− 2dΓR(0,Γ)P (ζ,Γ)

+ dΓR(0,Γ)

∫
dζ2 P (ζ2,Γ)P (ζ̃ − ζ2,Γ)

}
×
[
1 + dΓ(P (0,Γ) +R(0,Γ))

]
.

The higher order terms of dΓ in above product are discarded because they are small.

Hence, the above equation can be simplified as

P (ζ̃ ,Γ + dΓ) = P (ζ,Γ)− 2dΓR(0,Γ)P (ζ,Γ)

+ dΓR(0,Γ)[P (ζ2) ∗ P (ζ̃ − ζ2)]

+ dΓP (0,Γ)P (ζ,Γ) + dΓR(0,Γ)P (ζ,Γ), (70)

where P (ζ2) ∗ P (ζ̃ − ζ2) is the convolution of P (ζ2,Γ) and P (ζ̃ − ζ2,Γ). Because

dP =P (ζ̃ ,Γ + dΓ)− P (ζ,Γ)

=

(
∂P

∂Γ
dΓ +

∂P

∂ζ
dζ

)
=

(
∂P

∂Γ
− ∂P

∂ζ

)
dΓ ,

equation (70) can be reduced to

∂P

∂Γ
=
∂P

∂ζ
−R(0,Γ)P (ζ,Γ) +R(0,Γ)[P (ζ2) ∗ P (ζ̃ − ζ2)] + P (0,Γ)P (ζ,Γ) . (71)
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Thus, equation (71) gives the variation in the probability distribution, P (ζ,Γ), for

decimation of sites.

Variation in the probability distribution function R(β,Γ) due to decimation of

bonds is

R(β̃,Γ + dΓ) =

{
R(β,Γ)− dΓP (0,Γ)R(β,Γ)

∫
dβ2R(β2,Γ)

− dΓP (0,Γ)R(β,Γ)

∫
dβ3R(β3,Γ)

+ dΓP (0,Γ)

∫
dβ2

∫
dβ3R(β2,Γ)R(β3,Γ)δ(β̃ − β2 − β3)

}
× [1− dΓ(P (0,Γ) +R(0,Γ))]−1 , (72)

where R(β̃,Γ + dΓ) and R(β,Γ) are the respective probability distribution functions

after and before the decimation. The term P (0,Γ) represents the probability distri-

bution function at J23 = Ω. The second, third and fourth term on the right hand side

come from the elimination of ε02, ε
0
3 and the addition of ε̃ respectively. The last term

is due to normalization of distribution functions.

In equation (72),
∫

dβ2R(β2,Γ) and
∫

dβ3R(β3,Γ) are both equal to 1. Using

approximations similar to that used to obtain equation (70), equation (72) reduces

to

R(β̃,Γ + dΓ) = R(β,Γ)− 2dΓP (0,Γ)R(β,Γ)

+ dΓP (0,Γ)[R(β2) ∗R(β̃ − β2)]

+ dΓR(0,Γ)R(β,Γ) + dΓP (0,Γ)R(β,Γ). (73)

Because

dR = R(β̃,Γ + dΓ)−R(β,Γ) =

(
∂R

∂Γ
− ∂R

∂β

)
dΓ,

equation (73) is reduced to

∂R

∂Γ
=
∂R

∂β
− P (0,Γ)R(β,Γ) + P (0,Γ)[R(β2) ∗R(β̃ − β2)] +R(0,Γ)R(β,Γ). (74)
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Thus, equation (74) gives the variation in the probability distribution R(β,Γ) for the

decimation of bonds.

4.4.2. Probability distribution functions at and near the critical point.

When the system goes to paramagnetic phase under iterations of recursion relation-

ships, variables J become small compared to variables ε. Hence, the process of elimi-

nating rotors prevents formation of a large cluster. On the other hand, if the system

goes to magnetic phase, then variables ε become small compared to J . Thus, the

process of combining two rotors leads to formation of a large cluster. At the critical

point, the probability distributions of two variables are equal because the system is

in neither phase.

The following discusses the functional forms of the probability distribution func-

tions at the critical point. These functions are assumed33 to be

P (ζ,Γ) = P0(Γ)e−P0(Γ)ζ and R(β,Γ) = R0(Γ)e−R0(Γ)β .

Substituting these trial functions in the flow equations (71) and (74) yields functional

forms of P0(Γ) and R0(Γ), which in turn give the probability distribution functions

at the critical point. The following illustrates the derivation of P0(Γ). Substitution

of trial functions in equation (71) yields:

P (ζ,Γ)
∂P0(Γ)

∂Γ

(
1

P0(Γ)
− ζ
)

= −P0(Γ)P (ζ,Γ)−R0(Γ)P (ζ,Γ)

+R0(Γ)P0(Γ)ζP (ζ,Γ) + P0(Γ)P (ζ,Γ) ,

where P (ζ2) ∗ P (ζ̃ − ζ2) ≡ P0(Γ)ζP (ζ,Γ), R(0,Γ) = R0(Γ) = P0(Γ) and P (0,Γ) =

P0(Γ). Thus,

dP

dΓ
= −P 2

0 (Γ) ,

which is satisfied by P0(Γ) = 1/Γ. Likewise, the use of trial functions in equation

(74) yields R0(Γ) = 1/Γ. Hence, the probability distribution functions at the critical

33A rigorous derivation of probability distribution functions can be found in [41] and the references
therein.
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point are

P (ζ,Γ) =
e−

ζ
Γ

Γ
and R(β,Γ) =

e−
β
Γ

Γ
. (75)

Therefore, because the energy scale Ω tends to 0, the logarithmic variable Γ diverges;

consequently, both distribution functions become broad. In this situation, the ap-

proximate recursion relationships become exact because removal of a rotor or a bond

corresponds to a small fractional change in the energy scale.

For the system away from the critical point, the distance from that point is

given by

r =
ln ε− ln J

var(ln ε) + var(ln J)
. (76)

Invariance of r under the renormalization procedure justifies this definition. The

system is in paramagnetic phase if r greater than 0 and in magnetic phase if r is less

than 0. The solutions [41] of equations (71) and (74) in the limit r → 0 and Γ→∞
are

P (ζ,Γ) =
2r

e2rΓ − 1
exp

(
− 2ζr

e2rΓ − 1

)
and

R(β,Γ) =
−2r

e−2rΓ − 1
exp

(
2βr

e−2rΓ − 1

)
, (77)

which give the probability distribution functions near the critical point.

4.4.3. Scaling forms of number density and moment. The number

density nΓ is the number of clusters surviving at energy scale Γ. The bonds and sites

for which the respective ζ and β are approximately equal to 0 are removed when the

energy scale changes from Γ to Γ + dΓ. If nS(ζ,Γ) and nB(β,Γ) are the number of

sites and bonds at energy scale Γ, then the number density at this scale varies as

dnΓ

dΓ
= −[P0(Γ) +R0(Γ)]nΓ ,

where P0(Γ) is equal to nS(0,Γ)/nΓ and R0(Γ) is equal to nB(0,Γ)/nΓ. The solution
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of this equation at the critical point is

nΓ ∼ 1/Γ2 ,

which is the scaling form of number density at that point for a one-dimensional

system. The number density relates the length to the energy scale of the system.

Because typical cluster length L is approximately equal to 1/nΓ, the above scaling

form yields

L1/2 = ln

(
ΩI

Ω

)
, (78)

which is the length scale of a surviving cluster given by equation (34). Thus, the

critical exponent ψ, defined in equation (35), is equal to 1/2.

For the system at some distance from the critical point, Γ scales as 1/r, where

r is the distance from the critical point given by equation (76). Thus, from the

relationship between the length of the surviving cluster and the energy scale, the

correlation length of the system is given by

ξ ∼ 1/r2 .

Hence, the correlation length critical exponent ν is equal to 2.

The analysis thus far is for a one-dimensional system. The strong-disorder

renormalization group method cannot give a closed-form solution for higher dimen-

sions because the lattice topology changes under the recursion relationships. However,

the scaling forms in one dimension can be generalized to higher dimensions. Thus,

the scaling form of number density in d dimension is

nΓ(r) = Γ−d/ψN (rνψΓ) . (79)

In the limit x → ∞, the scaling function N (x) is approximately equal to xd/ψe−cdx,

where c is a constant. The scaling function is constant in the limit x → 0. Thus, in

the Griffiths paramagnetic region (where r is greater than 0), the number density is

nΓ ∼ rdνe−Γd/z, where the dynamical critical exponent z is equal to r−νψ.
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The moment of a rotor formed by combining two rotors is equal to the sum

of the moments of those rotors. Thus, the exact solution [41] in one dimension for

typical moment of the cluster at the critical point is

µΓ(r) = Γφ ,

where φ is equal to (1 +
√

5)/2. This scaling form of the typical moment in one

dimension can be generalized to a higher dimension as

µΓ(r) = ΓφM(rνψΓ) . (80)

The scaling function M(x) is approximately equal to x1−φ in the limit x → ∞, and

it is constant in the limit x→ 0. Thus, the typical moment of the cluster µΓ varies as

rνψ(1−φ)Γ in this region. The scaling forms of number density and moment are used

to find observable quantities as discussed below in section 4.5.

4.5. OBSERVABLE QUANTITIES

Thermodynamically observable quantities at some non-zero temperature T are

calculated by applying the strong-disorder renormalization group method up to a

finite energy scale equal to T . The remaining clusters present at that stage in the

renormalization group are nearly independent because their interaction energies are

much smaller than the thermal energy; consequently, each cluster contributes indi-

vidually to the observed quantities. Therefore, the following first evaluates observed

quantities of a cluster.

4.5.1. Observable quantities of a cluster. The Landau-Ginzburg-Wilson

functional of a cluster is

S = T
∑
ωn

[
(ε+ γ|ωn|) |φ(ωn)|2 − H(−ωn)φ(ωn)

]
,

where H(ωn) is a source field conjugate to the order parameter. Hence, the partition
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function of the cluster is

Z ≈ 1

2T
∑

ωn
(ε+ γ|ωn|)

exp

(
T
∑

ωn
H2(ωn)

4
∑

ωn
(ε+ γ|ωn|)

)
;

therefore, the dynamic susceptibility is

χ =
∂2 lnZ

∂H(ωn)∂H(−ωn)
≈
∑
ωn

T

(ε+ γ|ωn|)
. (81)

The susceptibility at finite temperature is derived from the single-site constraint (i.e.,

equation (54)). At a non-zero temperature, the zero frequency term is treated sepa-

rately. Hence, the constraint is

T

ε
+

1

π

∫ Λ

0

dωn
(ε+ γ|ωn|)

= 1 .

The solution of this equation is

T

ε
+

1

πγ
ln

(
1 +

γΛ

ε

)
= 1 .

It is simplified in the two limiting cases. In the first case, temperature is much smaller

than ε0 (i.e., γT << ε0, where ε0 is given by equation (55)). If ε is equal to ε0 + δ,

where δ is a small correction due to temperature, then the above solution can be

reduced to

T

ε0
+

1

πγ
ln

(
γΛ

ε0

)
− δ

πγε0
= 1 . (82)

Because 1/πγ ln
(
γΛ
ε0

)
is equal to 1, the small correction δ is equal to πγT .

In the second case, temperature is much larger than ε0 (i.e., γT >> ε0). In this

limit, the logarithmic term is very small; consequently, ε is equal to T . Thus,

ε =

 ε0 + πγT if γT << ε0 .

T if γT >> ε0

The order parameter represents a cluster of moment µ, and its contribution to
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uniform order-parameter susceptibility is proportional to µ2. Moreover, its contribu-

tion to local susceptibility is proportional to µ. Therefore, in the above two limiting

cases, uniform and local susceptibilities of a cluster are given by

χcluster =

 µ2/ε if γT << ε

µ2/T if γT >> ε
(83)

and

χcluster-loc =

 µ/ε if γT << ε

µ/T if γT >> ε
(84)

respectively. The dynamic susceptibility (i.e., equation (81)) of a cluster at absolute

zero is

χcluster-dynamic =
µ2

(ε+ γ|ωn| )
;

likewise, the dynamic local susceptibility of a cluster is

χcluster-dynamic-loc =
µ

(ε+ γ|ωn| )
.

The Wick rotation34 iωn → ω + iδ, where δ is very small, gives the above

susceptibilities in real frequencies as

χcluster-dynamic =
µ2

(ε− iγω)
and χcluster-dynamic-loc =

µ

(ε− iγω)
.

Thus,

Im χcluster-dynamic =
γµ2ω

(ε2 + γ2ω2)
and Im χcluster-dynamic-loc =

γµω

(ε2 + γ2ω2)
.

4.5.2. Observable quantities of the system. The following calculates

observable quantities of the system by summing all surviving clusters. The renormal-

ization group technique is carried out to energy scale Ω, which is equal to T , to find

34The term −iγω in the denominator of χcluster-dynamic is a result of Wick rotation carried out
before expading the logarithmic term in equation (E.3).
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the uniform susceptibility at temperature T . Under this condition, the logarithmic

variable Γ is equal to ln(ΩI/T ). Equations (79), (80), and (83) yield the scaling form

of the uniform susceptibility:

χ =
1

T
nΓ(r)µ2

Γ(r) ,

i.e.,

χ =
1

T

[
ln

(
ΩI

T

)]2φ−d/ψ

N (rνψ ln(ΩI/T ))M2(rνψ ln(ΩI/T )) . (85)

Therefore, the uniform susceptibility at the critical point (where r is equal to 0) is

χ ∼ 1

T

[
ln

(
ΩI

T

)]2φ−d/ψ

,

and in the Griffiths paramagnetic region it is

χ ∼ T d/z−1rνd+2νψ(1−φ)

[
ln

(
ΩI

T

)]2

.

The scaling form of uniform susceptibility determines the shape of the phase boundary

near the critical point. The scaling function of equation (85) has a singularity at a

finite temperature critical point for a constant critical value of its argument, i.e.,

rνψ ln

(
ΩI

Tc

)
= c .

Thus, the shape of the phase boundary near the critical point is

Tc = exp(−c r−νψ) , (86)

as shown in figure (4.7). The shape of the phase boundary agrees qualitatively with

that of CePd1−xRhx in figure (4.1).
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Figure 4.7. Phase diagram in the vicinity of an infinite randomness fixed point
(IRFP). The shape of the phase boundary near the infinite randomness
critical point is given by equation (86). The Griffiths paramagnetic re-
gion is represented by the quantum paramagnet (QPM). (Reprinted fig-
ure from Josè A. Hoyos, Chetan Kotabage, and Thomas Vojta , Physical
Review Letters, 99, 230601 (2007). Copyright (2007) by the American
Physical Society.)

The scaling form of the local susceptibility,

χloc =
nΓ(r)µΓ(r)

T
,

i.e.,

χloc =
1

T

[
ln

(
ΩI

T

)]φ−d/ψ
N (rνψ ln(ΩI/T ))M(rνψ ln(ΩI/T )) , (87)

is obtained from equations (79), (80), and (84). Thus, the local susceptibility at the

critical point and in the Griffiths paramagnetic region is

χloc ∼
1

T

[
ln

(
ΩI

T

)]φ−d/ψ
and

χloc ∼ T d/z−1rνd+νψ(1−φ) ln

(
ΩI

T

)
respectively.
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The energy contribution of the clusters is found by summing the energies of all

clusters. Therefore,

∆E = TnT (r) = T

[
ln

(
ΩI

T

)]−d/ψ
N (rνψ ln(ΩI/T )) .

Thus, the specific heat is

C ∼ (ln(ΩI/T ))−d/ψ

at the critical point and

C ∼ rνdT d/z

in the Griffiths paramagnetic region.

The low-temperature order parameter dependence on the conjugate field is cal-

culated by applying the strong-disorder method down to energy ΩH, which is equal

to µH. Clusters of energy ε (which is much greater than ΩH) are decimated; hence,

they do not contribute to the order parameter. But clusters of energy much less than

ΩH are polarized; therefore, they do contribute to the order parameter. The scaling

form of the order parameter is

m = nΩH
(r)µΩH

(r) ,

i.e.,

m =

[
ln

(
ΩI

ΩH

)]φ−d/ψ
N (rνψ ln(ΩI/ΩH))M(rνψ ln(ΩI/ΩH)) . (88)

At the critical point (where r is equal to 0), the order parameter is

m ∼
[
ln

(
ΩI

H

)]φ−d/ψ
.

If this relationship is compared with the definition of exponent δ

m ∼ H1/δ,
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then δ is formally infinity. This order parameter has a correction of

−

[
ln

([
ln

(
ΩI

H

)]φ)]φ−d/ψ
, (89)

which comes from the scaling form of the moment (i.e., equation (80)). The order

parameter in the Griffiths paramagnetic region is

m = Hd/zrdν+νψ(1−φ)(1+d/z) [ln(Ω/H)]1+d/z .

The scaling form of zero-temperature dynamic susceptibility at an external fre-

quency ω and energy Ωω (which is equal to γµω) is

Imχ =
1

γω
[ln (ΩI/γω)]φ−d/ψN (rνψ ln(ΩI/γω))M(rνψ ln(ΩI/γω)) ,

where γ is the damping coefficient of a single cluster. If the above correction (i.e.,

equation (89)) to the scaling form is discarded, then the dynamic susceptibility is

Imχ ∼ 1

γω
[ln (ΩI/γω)]φ−d/ψ

at the critical point. In the Griffiths paramagnetic region, the dynamic susceptibility

is

Imχ ∼ (γω)d/z−1 rdν+νψ(1−φ)(1+d/z) [ln(Ω/γω)]1+d/z .

The scaling form of local susceptibility is

Imχloc =
1

γω
[ln(ΩI/γω)]−d/ψN (rνψ ln(ΩI/γω)) .

Thus, the local susceptibility is

Imχloc ∼
[ln(ΩI/γω)]−d/ψ

γω
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at the critical point and

Imχloc ∼ (γω)1−d/z rdν+νψ(1−φ)d/z [ln(Ω/γω)]d/z

in the Griffiths region.

4.5.3. Observable quantities for all N greater than 1. The observable

quantities calculated above are for a large number of order parameter components,

i.e., for the large N . To show that these results are valid for all N greater than 1

(i.e., for all continuous-symmetry cases), the recursion relationship for decimation of

a site (i.e., equation (60)) and a bond (i.e., equation (67)) are considered.

Equation (60) for decimation of a site is derived from the second-order pertur-

bation theory and is therefore valid for all N including the case of N = 1. The other

recursion relationship in equation (67) for decimation of a bond combines two rotors.

Previous research [67] has shown that for all continuous-symmetry cases of N greater

than 1, the effective distance from the critical point ε is

ε = e−cµ ,

where c is a constant and µ is the moment of the cluster. The exponential relationship

between ε and µ and this recursion relationship fulfill the condition that the moment

of cluster formed by combining two rotors is equal to the sum of the moments of those

rotors. Thus, this recursion relationship is valid for all N greater than 1. Therefore,

the observable quantities found at and near the critical point for these recursion

relationships are valid for all continuous-symmetry cases with N greater than 1.

Chapter 6 below summarizes the results obtained for observable quantities and

compares them with conventional critical behavior and experiments.
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5. SUPEROHMIC DAMPING IN QUANTUM PHASE TRANSITIONS

Chapter 4 considered the problem of a quantum phase transition in the presence

of ohmic damping. This chapter considers a generalization of such a problem in

which ohmic damping is replaced by superohmic damping. The motivation here is

to investigate the changes in the characteristics of infinite randomness critical point

when the damping gets weaker.

5.1. THE LANDAU-GINZBURG-WILSON FUNCTIONAL

The Landau-Ginzburg-Wilson functional derived in subsection 4.2.4 (i.e., equa-

tion (50)) can be generalized to

S =T
∑
i

∑
ωn

( ri + λi + γi|ωn|2/z0 ) |φi(ωn)|2

− T
∑
〈i,j〉

∑
ωn

φi(−ωn) Jij φj(ωn) . (90)

Superohmic damping is qualitatively weaker than ohmic damping and the ex-

ponent z0 is between 1 and 2. For ohmic damping, z0 is equal to 2. Cases involving

no damping (i.e., z0 = 1) and subohmic damping (i.e., z0 > 2), which is qualitatively

stronger than the ohmic damping, are discussed at the end of this chapter. The

following discusses a single-site constraint for superohmic damping.

The constraint for a single rotor is derived to find the relationship between the

damping coefficient and the distance from the critical point. The single site constraint

of equation (54) for the superohmic damping is

T
∑
ωm

1

ε+ γ |ωm|2/z0
= 1 . (91)

The sum can be transformed into an integral at absolute zero:∫ ∞

0

dωm
ε+ γ (ωm)2/z0

= π . (92)
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The definition εx2/z0 = γ(ωm)2/z0 simplifies this equation to

ε
z0
2
−1

γz0/2

∫ ∞

0

dx

1 + x2/z0
= π .

Because the above integral is a constant c, it yields the relationship between distance

from the critical point ε and the damping coefficient γ:

ε = c(1/γ)z0/(2−z0) . (93)

The distance from the critical point in superohmic damping has a power law

dependence on the damping coefficient. For ohmic damping, however, the distance

from the critical point is exponentially dependent on the damping coefficient (i.e.

equation (55)).

5.2. APPLICATION OF THE STRONG-DISORDER

RENORMALIZATION GROUP METHOD

The recursion relationships are derived below using technique similar to that

outlined above in section 4.3 for ohmic damping. In the Landau-Ginzburg-Wilson

functional of equation (90), the largest local energy (i.e., Ω = max(εi, Jij)) is first

identified. In the first case discussed below, ε2 is the largest local energy in a cluster

of sites 1, 2, and 3.

5.2.1. Decimation of a site. Rotor φ2 is eliminated because ε2 is much

greater than J12 and J23, and the rotor does not contribute to the order parameter.

For site 2, the partition function is

Z =

∫
dφ∗1(ωn) dφ1(ωn) dφ2(ωn) dφ∗2(ωn) dφ3(ωn) dφ∗3(ωn) e

−(S0+S1)

with

S0 = T
∑
ωn

(ε2 + γ2|ωn|2/z0) |φ2(ωn)|2
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and

S1 = −T

[∑
ωn

φ1(−ωn) J12 φ2(ωn) +
∑
ωn

φ2(−ωn) J23 φ3(ωn)

]
.

The expansion in terms of cumulants (i.e., equation (B.1)) yields the effective inter-

action J̃13 between rotors at sites 1 and 3:

−T
∑
ωn

φ1(−ωn) J̃13φ3(ωn) = − ln
〈
eS1
〉

0

= −〈S1〉0 −
1

2

(〈
S2

1

〉
0
− 〈S1〉20

)
+O(S3

1) , (94)

and the partition function after elimination of rotor φ2 is

Z̃ =

∫
dφ∗1(ωn) dφ1(ωn) dφ∗3(ωn) dφ3(ωn) e

T
∑
ωn

φ1(−ωn) J̃13 φ3(ωn) .

The term 〈S1〉0, which is the average of S1 with respect to S0, is given by

〈S1〉0 =
−T

∑
ωn
φ1(−ωn) J12

∫
dφ2(ωn) dφ∗2(ωn)φ2(ωn) e

−S0∫
dφ2(ωn) dφ∗2(ωn) e

−S0

−
T
∑

ωn
φ3(ωn) J23

∫
dφ2(ωn) dφ∗2(ωn)φ2(−ωn) e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

.

The integrals vanish due to symmetry. Therefore,

〈S1〉0 = 0. (95)

The term 〈S2
1〉0 is given by

〈
S2

1

〉
0

=
T
∑

ωn
|φ1(ωn)|2 J2

12

∫
dφ2(ωn) dφ∗2(ωn) |φ2(ωn)|2 e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

+
T
∑

ωn
|φ3(ωn)|2 J2

23

∫
dφ2(ωn) dφ∗2(ωn) |φ2(ωn)|2 e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

+
2T
∑

ωn
φ1(−ωn) J12J23 φ3(ωn)

∫
dφ2(ωn) dφ∗2(ωn) |φ2(ωn)|2 e−S0∫

dφ2(ωn) dφ∗2(ωn) e
−S0

,
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which is solved by using equation (C.3):

〈
S2

1

〉
0

= T
∑
ωn

[
J2

12 |φ1(ωn)|2

ε2 + γ2|ωn|2/z0
+

J2
23 |φ3(ωn)|2

ε2 + γ2|ωn|2/z0
+

2J12J23 φ1(−ωn)φ3(ωn)

ε2 + γ2|ωn|2/z0

]
. (96)

The first two terms in above equation are subleading corrections to ε1 and ε3 respec-

tively. The last term is the effective interaction between rotors φ1 and φ3. In the low

frequency limit, γ2|ωn|2/z0/ε2 is less than 1. Hence, the denominator in the equation

(96) can be simplified as

1

ε2 + γ2|ωn|2/z0
≈ 1

ε2
. (97)

Thus, equations (94), (95), (96), and (97) yield the effective interaction:

J̃13 ≈
J12 J23

ε2
, (98)

where higher order cumulants are discarded in the cumulant expansion. This recursion

relationship is similar to that obtained for the ohmic damping (which is represented

by equation (60)). In both cases, the recursion relationship comes from second-order

perturbation theory; thus, it is independent of z0.

5.2.2. Decimation of a bond. A cluster of sites 2 and 3 is considered for

the second case, where the bond J23 is the largest local energy. Hence, J23 is much

greater than ε2 and ε3, and rotors φ2 and φ3 act as a single rotor φ̃2. For this cluster,

the functional is

S = T
∑
ωn

−φ2(−ωn) J23 φ3(ωn) + (ε2 + γ2|ωn|2/z0) |φ2(ωn)|2

+ (ε3 + γ3|ωn|2/z0) |φ3(ωn)|2 . (99)

It is simplified in the eigenbasis of ψ+ and ψ−. Thus, equation (99) in the matrix

form is

S = T
∑
ωn

(
φ2(−ωn) φ3(−ωn)

) α2 −J23

2

−J32

2
α3

 φ2(ωn)

φ3(ωn)

 ,
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where α2 is equal to ε2 + γ2|ωn|2/z0 and α3 is equal to ε3 + γ3|ωn|2/z0 . Eigenvalues of

above matrix are

E+ =
(α2 + α3) +

√
(α2 − α3)2 + J2

23

2
and

E− =
(α2 + α3)−

√
(α2 − α3)2 + J2

23

2
(100)

with eigenvectors

ψ+ = cos

(
θ

2

)
φ2(ωn) + sin

(
θ

2

)
φ3(ωn) and

ψ− = sin

(
θ

2

)
φ2(ωn) + cos

(
θ

2

)
φ3(ωn) , (101)

where tan θ is equal to J23/(α3 − α2). Thus, the functional of equation (99) is

S ′ = T
∑
ωn

E+|ψ+(ωn)|2 + E−|ψ−(ωn)|2 (102)

in the eigenbasis.

The energy eigenvalue E− (of equation (100)) is

E− =
α2 + α3 − J23

2
,

where higher order terms in its expansion are discarded because J23 is much greater

than ε2 and ε3. Therefore, the damping coefficient is

γ̃ = γ2 + γ3 ,

and the effective distance from the critical point is

ε̃ = ε2 + ε3 − J23 .

This distance is approximated as

ε̃ ≈ X2 +X3 ,
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where X2 is equal to ε2− J23

2
and X3 is equal to ε3− J23

2
. The length constraint at sites

2 and 3 are used to find this effective distance, which is shown below in appendix G.

Thus, equation (G.11) yields

ε̃−x ≈ α(ε−x2 + ε−x3 ) , (103)

where x is equal to 1− 2/z0, α is a constant, and ε2, ε3 are given by equation (93).

Thus, the general form of recursion relationships for decimation of sites and

bonds is

J̃i−1,i+1 ≈
Ji−1,i Ji,i+1

ε1

ε̃−x ≈ α(ε−xi + ε−xi+1) .

The renormalization group flows and observable quantities for these recursion rela-

tionships in a one-dimensional system are calculated in [68] and the transition found

is of Kosterlitz-Thouless35 type. The main difference between superohmic and ohmic

damping is reflected in the dynamical scaling form, which is conventional power-law

type in the former and activated in the latter.

For the no-damping case (i.e., when z0 is equal to 1), dynamic scaling is of the

power-law type, and equation (103) is reduced to

1

ε̃
≈ α(

1

ε2
+

1

ε3
) ,

which is the result derived in [69] for a one-dimensional system of bosons with strong

disorder. The corresponding flow equations are given in [69], and the transition is

again of Kosterlitz-Thouless type.

For the subohmic case (i.e., when z0 is grater than 2), the integral in equation

(92) is reduced to

γc = π(1− 2/z0)Λ
2/z0−1

in the limit ε tending to 0. The integral in equation (92) has no solution if the damping

35For the details of Kosterlitz-Thouless transition see, e.g., [14, 4].
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coefficient γ is greater than γc. Thus, a cluster freezes for a damping coefficient greater

than γc. The damping coefficients are summed under the recursion relationships.

Thus, the dynamics of the transition eventually freezes and the transition is destroyed

by smearing [70].
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6. SUMMARY AND CONCLUSIONS

In summary, quantum phase transitions with disorder were studied in the pres-

ence of ohmic damping. The Landau-Ginzburg-Wilson functional for these quantum

phase transitions was derived using the standard techniques of [57, 58, 59]. The result-

ing functional was then modified by expressing it in discrete space and by making the

number of order-parameter components N large. The first modification allows the ap-

plication of the strong-disorder renormalization group method to the functional. This

method is a real space method and therefore, expressing the functional in discrete

space is necessary. The second modification turns the functional into a self-consistent

Gaussian problem that can be solved analytically. The strong-disorder renormal-

ization group method was applied to this modified functional to find the recursion

relationships for the coupling constants. From these relationships, the renormaliza-

tion group flow equations were derived [41] and the critical behavior was studied. The

observable quantities at and near the critical point were discussed. Although these

calculations were performed within the limit of a large number of order-parameter

components (i.e. for a large N), they were shown to be valid for all N greater than 1.

A generalization of this problem, that is quantum phase transitions in the presence of

superohmic damping, was also studied. The recursion relationships for this case were

again derived by applying the strong-disorder renormalization group method. The

critical behavior for these recursion relationships is obtained in [68]. The following

discusses the limitations of this theory and provides a perspective of the results.

The theory is developed on the basis of the so-called Hertz-Millis approach to

quantum phase transitions. The assumption, which is suitable for transition metal

compounds, in this approach is that the quasi-particles do not break up at the transi-

tion. For heavy-fermion systems, the theory relies on the assumption that the Kondo

effect survives at low temperatures. Several experimental systems listed in [42, 43] are

in contradiction with this assumption. Thus, the Landau-Ginzburg-Wilson functional

is inappropriate for these systems. Apart from this difficulty, the Landau-Ginzburg-

Wilson functional does not take into account other complications such as long-range

interactions between order-parameter fluctuations. These complications are present
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in real systems and can affect the characteristics of a phase transition at absolute

zero and at a very low temperature. Nevertheless, the results obtained here provide

insight in a disorder-dominated quantum phase transition with ohmic damping.

The investigation shows that quantum phase transitions in the presence of ohmic

dissipation are strongly influenced by disorder. The critical point is an infinite-

randomness critical point, which is in the universality class same as that of random

transverse-field Ising model [40, 41]. This result is in agreement with the numerical

study carried out in [71] for a one-dimensional Landau-Ginzburg-Wilson functional

for a large N . At the critical point, the observable quantities (i.e., specific heat and

susceptibility) follow activated scaling (i.e., power-law dependence of logarithmic vari-

ables) rather than conventional power-law dependence. The behavior of observable

quantities is of power-law type in the quantum Griffiths paramagnetic region. From

the general classification of rare regions in [22, 67], the dimension of rare regions in a

quantum phase transition with ohmic dissipation is equal to the lower critical dimen-

sion of the system. The behavior of observable quantities at the critical point and in

the Griffiths region are in agreement with this classification.

The shape of the phase boundary near the critical point is derived from the

scaling form of susceptibility. The critical temperature predicted in this region is

proportional to e−r
−νψ

, where r is the distance from the critical point. Critical tem-

peratures and the resulting shape of the phase boundary near the apparent critical

point in CePd1−xRhx (i.e., figure (4.1)) are in agreement with this prediction. The

susceptibility in the Griffiths paramagnetic phase is proportional to T d/z−1 at a spe-

cific impurity concentration (i.e. at a constant r). The susceptibility measurements

for CePd1−xRhx (i.e., figure (4.2)) and Ni1−xVx (i.e., figure (4.4)) at various impurity

concentrations display this power-law temperature dependence in the Griffiths para-

magnetic region. The susceptibility measurements for Ni1−xVx are in agreement with

the theoretical prediction in the range of 10 to 300 K. The superconductor-metal phase

transition in extremely thin nanowires [47, 48] occurring as a function of thickness of

wire can also be explained by this theory. This transition is studied in the absence of

disorder in references [72, 73] using one dimensional Landau-Ginzburg-Wilson func-

tional with ohmic dissipation. The magnetic impurities that are distributed randomly
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on the surface of nanowires introduce disorder in the system. Hence, the thermody-

namics of this transition can be described by this theory.

A brief discussion of other dissipation scenarios is as follows: The recursion

relationships derived for superohmic damping are similar except for the one derived

for the effective distance from the critical point. The resulting phase transition for

these recursion relationships is of Kosterlitz-Thouless type [68] and has conventional

power-law scaling. The transition for the subohmic damping case is destroyed by

smearing. In the absence of dissipation, the recursion relationships are similar to a

system of bosons with strong disorder. The transition for this case is of Kosterlitz-

Thouless type.

The investigation so far has focused on the critical point and the disordered

region of a phase diagram. Beyond this theory, there is much complex physics yet to be

explored in these regions. The physics in the ordered phase of the phase diagram also

poses challenges. It seems that a comprehensive theory of quantum phase transitions

has a long way to go.
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The Hubbard interaction can be represented in terms of the spin-density vector

in discrete space, which is shown in the following. This result can be mapped to

continuum space.

In discrete space, the spin-density vector at a site is defined as

ns =
∑
i,j

C†
i σ̂ijCj

=
1

2

[
x̂(C†

↑C↓ + C†
↓C↑) + ŷ(−iC†

↑C↓ + iC†
↓C↑) + ẑ(C†

↑C↑ − C†
↓C↓)

]
.

The dot product of the spin-density vector is

ns · ns =
n2
↑ + n2

↓

4
+

(n↑ + n↓)

2
− 3n↑n↓

2
.

Since n↑ is a product of creation and annihilation operators of a fermion, n2
↑ is equal

to 1 or 0. Thus, n2
↑ is equal to n↑; likewise, n2

↓ is equal to n↓. These results transform

the above equation into

n↑n↓ =
n↑ + n↓

2
− 2

3
ns · ns .

For a lattice with l sites, the Hubbard interaction can thus be replaced as

u
∑
l

nl ↑nl ↓ = −2u

3

∑
l

nl s · nl s , (A.1)

where the term (n↑ + n↓) is absorbed in chemical potential as a shift.
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The expansion of ln 〈ex〉x0 in terms of cumulants is

ln 〈ex〉x0 =〈x〉x0 + 〈x2〉x0 − 〈x〉2x0
+ 〈x3〉x0 − 3〈x2〉x0〈x〉x0 + 2〈x〉3x0

+ 〈x4〉x0 − 3〈x2〉2x0
+ 4〈x〉x0〈x3〉x0 − 6〈x〉4x0

+ ... . (B.1)
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The following solves the integral∫
|φ|2 exp(−a|φ|2) dφ dφ∗∫

exp(−a|φ|2) dφ dφ∗
.

If ‘Reφ’ and ‘Imφ’ are real and imaginary parts of a rotor variable φ, then the integral

in the numerator yields

2i

∫
(Re2φ+ Im2φ) exp

[
−a
(
Re2φ+ Im2φ

)]
d (Reφ) d (Imφ) ,

where dφ dφ∗ is equal to 2i d (Reφ) d (Imφ). Real and imaginary parts are separated

to solve the integral. Thus,

2i

∫ (
Re2φ

)
exp

[
−a
(
Re2φ

)]
d (Reφ)

∫
exp

[
−a
(
Im2φ

)]
d (Imφ)

+ 2i

∫ (
Im2φ

)
exp

[
−a
(
Im2φ

)]
d (Imφ)

∫
exp

[
−a
(
Re2φ

)]
d (Reφ) .

The solution of Gaussian integrals yields the numerator:∫
|φ|2 exp

(
−a|φ|2

)
dφ dφ∗ =

iπ

2a2
. (C.1)

Using the same technique, the integral in the denominator is calculated as∫
exp(−a|φ|2) dφ dφ∗ =

iπ

2a
. (C.2)

Thus, equations (C.1) and (C.2) yield∫
|φ|2 exp (−a|φ|2) dφ dφ∗∫

exp (−a|φ|2) dφ dφ∗
=

1

a
. (C.3)
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The integral

∫
dq1

Θ
(
µ− q2

1

2

)
q1 · q + q2

2
+ iωn

(D.1)

is evaluated here. The definition ρ = q2

2
+ iωn reduces the above integral to

∫ KF

0

∫ π

0

∫ 2π

0

q2
1 sin θ dq1 dθ dφ

q1q cos θ + ρ
.

Therefore, the solution yields

∫
dq1

Θ
(
µ− q2

1

2

)
q1 · q + q2

2
+ iωn

=
2π

q

[(
K2
F

2
− ρ2

2q2

)
[ln(−qKF + ρ)− ln(qKF + ρ)]− ρKF

q

]
. (D.2)
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The respective Fourier transforms of the creation and annihilation Grassman

fields are

ψi(x, τ) = T
∑
ωn

∫
dqψi(q, ωn) e

i(q·x−ωnτ) and

ψ̄i(x, τ) = T
∑
ωn

∫
dq ψ̄i(q, ωn) e

−i(q·x−ωnτ) .

Use of these to obtain S0 (i.e., equation (40)) in Fourier space yields

S0(q, ωn) = T
∑
ωn

∫
dq
∑
i

[
ψ̄i(q, ωn)

(
−q2

2
+ µ− iωn

)
ψi(q, ωn)

]
. (E.1)

Similarly, the product of spin-density vectors in Fourier space is

ns(x, τ) · ns(x′, τ ′) =T 4
∑

ωn1 ωn2 ωn3 ωn4

∫
dq1 dq2 dq3 dq4 e

i[(q2−q1)·x−(ωn2−ωn1 )τ ]

× e−i[(q3−q4)·x′−(ωn3−ωn4 )τ ′]

×
∑
iji′j′

ψ̄i(q1, ωn1)
σ̂ij
2
ψj(q2, ωn2) · ψ̄i′(q3, ωn3)

σ̂i′j′

2
ψj′(q4, ωn4) .

(E.2)

Therefore, equations (E.1) and (E.2) yield the thermal average of spin-density vectors:

〈ns(x, τ) · ns(x′τ ′)〉S0 =

∏
i

∫
Dψi Dψ̄i ns(x, τ) · ns(x′, τ ′) e−S0(q,ωn)∏

i

∫
Dψi Dψ̄i e−S0(q,ωn)

.

Application of the Wick theorem36 contracts the Grassman fields ψ̄i(q1, ωn1) ψj′(q4, ωn4)

and ψj(q2, ωn2) ψ̄i′(q3, ωn3). This contraction implies

q1 = q4 ; q2 = q3

ωn1 = ωn4 ; ωn2 = ωn3 .

36See, e.g., [54], [60].
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Hence,

〈ns(x, τ)·ns(x′τ ′)〉S0 = αT 2
∑

ωn1 ωn2

∫
dq1 dq2

ei[(q2−q1)(x−x′)−(ωn2−ωn1 )(τ−τ ′)](
−q2

1

2
+ µ− iωn1

)(
−q2

2

2
+ µ− iωn2

) ,
where α is equal to

∑
ij σ̂ij · σ̂ji. Therefore, the dynamic susceptibility χ(q, ωn) (i.e.,

equation (45)) is given by

χ(q, ωn) = α

∫
dx′′

∫ β

0

dτ ′′ T 2
∑

ωn1ωn2

∫
dq1 dq2 e

i[(q2−q1−q)·x′′−(ωn2−ωn1−ωn)τ ′′]

× 1(
−q2

1

2
+ µ− iωn1

)(
−q2

2

2
+ µ− iωn2

)
= αT

∑
ωn1

∫
dq1

1(
−q2

1

2
+ µ− iωn1

)(
− (q1+q)2

2
+ µ− i(ωn1 + ωn)

) .
The sum over ωn1 can be transformed into an integral:

χ(q, ωn) = α

∫
dq1

∫
dωn1

1(
−q2

1

2
+ µ− iωn1

)(
− (q1+q)2

2
+ µ− i(ωn1 + ωn)

) .
The integral over ωn1 is simplified by defining z as −i(ωn1 + ωn). Thus,

χ(q, ωn) = α

∫
dq1

∫
i dz

(z + iωn − ζ) (z − ζ ′)
,

where ζ is equal to
q2

1

2
− µ and ζ ′ is equal to (q1+q)2

2
− µ. The residue theorem gives

the following solution:

χ(q, ωn) = 2πα

∫
dq1

[
Θ(−ζ ′)

ζ ′ − ζ + iωn
− Θ(−ζ)
ζ ′ − ζ + iωn

]
,

where Θ is the Fermi step function. Substitution of ζ and ζ ′ in above equation yields

χ(q, ωn) = 2πα

∫ dq′
Θ
(
µ− q′2

2

)
q′ · q− q2

2
+ iωn

−
∫

dq1

Θ
(
µ− q2

1

2

)
q1 · q + q2

2
+ iωn

 ,

where q′ is equal to q1 + q. The definitions ρ′ = −q2

2
+ iωn and ρ = q2

2
+ iωn
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reduce both integrals in the above equation to equation (D.1). Thus, the solution

(i.e., equation (D.2)) of these integrals gives

χ(q, ωn) =
4π2α

q

[(
K2
F

2
− ρ2

2q2

)[
ln(−qKF + ρ)− ln(qKF + ρ)

]
+

(
K2
F

2
− ρ′2

2q2

)[
ln(−qKF + ρ′)− ln(qKF + ρ′)

]
+

(ρ′ − ρ)KF

q

]
.

(E.3)

Within the limit q/KF << 1 and ωn/qKF << 1, which is the relevant limit for

the ferromagnetic quantum phase transition, the above logarithmic terms can be

simplified as

ln(−qKF + ρ) = ln

(
−1− q

2KF

+ i
ωn

qKF

)
+ ln(qKF ) = iπsgn(ωn) + ln(qKF ) ,

ln(qKF + ρ) =

(
− q

2KF

+ i
ωn

qKF

)
+ ln(qKF ) ,

ln(−qKF + ρ′) = ln

(
−1 +

q

2KF

+ i
ωn

qKF

)
+ ln(qKF ) = iπsgn(ωn) + ln(qKF ) ,

and ln(qKF + ρ′) =

(
q

2KF

+ i
ωn

qKF

)
+ ln(qKF ) ,

where sgn is a sign function. Since ρ′ = ρ+ q2, the dynamic susceptibility reduces to

χ(q, ωn) =
4π2α

q

[(
K2
F

2
− ρ2

2q2

)
q

KF

+

(
q2

2
+ ρ

)(
iπsgn(ωn)− i

ωn
qKF

− q

2KF

)
+ qKF

]
.

Substitution of ρ and of the result ωnsgn(ωn) = |ωn| in the above equation yields

χ(q, ωn) = 4π2α

(
3KF

2
− q2

8KF

− π|ωn|
q

+
3ω2

n

q2KF

)
.
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Since the last term in the above equation is a subleading term, the dynamic suscep-

tibility is

χ(q, ωn) = 4π2α

(
3KF

2
− q2

8KF

− π|ωn|
q

)
. (E.4)
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The distance from the critical point of a cluster formed by combining rotors φ2

and φ3 is given by equation (65) as

ε̃ ≈ ε2ε3 − J2
23/4

J23

.

The length constraints at sites 2 and 3 for a particular frequency simplify this

expression. The following calculates this constraint at site 2 by using the thermal

average of φ2(ωm), which is

〈
|φ2(ωm)|2

〉
=

∫
|φ2(ωm)|2 dφ2(ωn) dφ∗2(ωn) dφ3(ωn) dφ∗3(ωn) e

−S∫
dφ2(ωn) dφ∗2(ωn) dφ3(ωn) dφ∗3(ωn) e

−S ,

where S is defined in equation (61). This average is expressed in the eigenbasis ψ+

and ψ− using equation (63):∫
D[ψ+ψ−](ωn) (cos2(θ/2)|ψ+(ωm)|2 + sin2(θ/2)|ψ−(ωm)|2) e−S′∫

D[ψ+ψ−](ωn) e−S
′ ,

where D[ψ+ψ−](ωn) is equal to dψ+(ωn) dψ∗
+(ωn) dψ−(ωn) dψ∗

−(ωn) and S ′ is defined

in equation (64). For a frequency ωm, integrals in the numerator and the denominator

split as∫
D[ψ+ψ−](ωm)[cos2(θ/2)|ψ+(ωm)|2 + sin2(θ/2)|ψ−(ωm)|2] e−Sωm∫

D[ψ+ψ−](ωm) e−Sωm

×
∫

D[ψ+ψ−](ωn6=m) e−S
′∫

D[ψ+ψ−](ωn6=m) e−S′
,

where Sωm is equal to T (E+|ψ+(ωm)|2 + E−|ψ−(ωm)|2). The first term above can be
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simplified as

cos2(θ/2)

[∫
dψ+(ωm) dψ∗

+(ωm)|ψ+(ωm)|2 e−T E+|ψ+(ωm)|2∫
dψ+(ωm) dψ∗

+(ωm) e−T E+|ψ+(ωm)|2

×
∫

dψ−(ωm) dψ∗
−(ωm) e−T E−|ψ−(ωm)|2∫

dψ−(ωm) dψ∗
−(ωm) e−T E−|ψ−(ωm)|2

]

+ sin2(θ/2)

[∫
dψ−(ωm) dψ∗

−(ωm)|ψ−(ωm)|2 e−T E−|ψ−(ωm)|2∫
dψ−(ωm) dψ∗

−(ωm) e−T E−|ψ−(ωm)|2

×
∫

dψ+(ωm) dψ∗
+(ωm) e−T E+|ψ+(ωm)|2∫

dψ+(ωm) dψ∗
+(ωm) e−T E+|ψ+(ωm)|2

]
.

Use of equation (C.3) to solve above integrals yields the thermal average:

〈
|φ2(ωm)|2

〉
=

1

T

[
cos2(θ/2)

E+

+
sin2(θ/2)

E−

]
=

4

T (4α2α3 − J2
23)

[
(α2 + α3)

2
+

cos θ

2

√
(α2 − α3)2 + J2

23

]
,

where α2 is equal to ε2 + γ2|ωn| and α3 is equal to ε3 + γ3|ωn|. However, because

cos θ =
α3 − α2√

(α2 − α3)2 + J2
23

, (F.1)

the average is reduced to

〈
|φ2(ωm)|2

〉
=

4α3

T (4α2α3 − J2
23)

. (F.2)

Thus, the constraint (i.e., equation (52)) at site φ2(ωm) is

T
∑
ωm

4α3

(4α2α3 − J2
23)

= 1 .

At zero temperature, the summation becomes an integral:∫ ∞

0

(ε3 + γ3ω) dω

(ε2 + γ2ω)(ε3 + γ3ω)− J2
23

4

= π . (F.3)
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The integral is solved by defining

(ε3 + γ3ω)/γ2γ3

ω2 + (ε2γ3 + γ2ε3)ω/γ2γ3 + (4ε2ε3 − J2
23)/4γ2γ3

=
A

B + ω
+

C

D + ω
.

Thus,

A+ C =
1

γ2

, AD +BC =
ε3
γ2γ3

,

BD =
4ε2ε3 − J2

23

4γ2γ3

, B +D =
ε2
γ2

+
ε3
γ3

. (F.4)

These equations yield B, D, A , and C:

B =
1

2

( ε2
γ2

+
ε3
γ3

)
+

√(
ε2
γ2

− ε3
γ3

)2

+
J2

23

γ2γ3

 , D =
4ε2ε3 − J2

23

4γ2γ3B

A =
Bγ3 − ε3

γ2γ3(B −D)
, C =

ε3 − γ3D

γ2γ3(B −D)
. (F.5)

Hence, the integral (F.3) is

∫ Λ

0

A

B + ω
dω +

∫ Λ

0

C

D + ω
dω = π ,

where Λ is a high-frequency cut-off. The solution of the above equation is

A ln

(
B + Λ

B

)
+ C ln

(
D + Λ

D

)
= π .

Because Λ is much greater than B and D, these fractions are defined as B+Λ
B
≈ Λ

B
and

D+Λ
D
≈ Λ

D
. Use of the definition of A + C (in equation (F.4)) modifies this equation

to

Aγ2 ln

(
D

B

)
+ ln

(
Λ

D

)
= πγ2 . (F.6)

Thus, the equation is derived from the constraint at site 2. It is used below with the

constraint at site 3 to derive the distance from the critical point. The constraint at

site 3 is derived in the following using similar steps. Hence, the thermal average of
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φ3(ωm) is

〈
|φ3(ωm)|2

〉
=

∫
|φ3(ωm)|2 dφ2(ωn) dφ∗2(ωn) dφ3(ωn) dφ∗3(ωn) e

−S∫
dφ2(ωn) dφ∗2(ωn) dφ3(ωn) dφ∗3(ωn) e

−S ,

where S is defined in equation (61). The thermal average in the eigenbasis ψ+ and

ψ− is ∫
D[ψ+ψ−](ωm) (sin2(θ/2)|ψ+(ωm)|2 + cos2(θ/2)|ψ−(ωm)|2) e−S′∫

D[ψ+ψ−](ωm) e−S′
.

Integrals in the numerator and the denominator split for a frequency as∫
D[ψ+ψ−](ωm) (sin2(θ/2)|ψ+(ωm)|2 + cos2(θ/2)|ψ−(ωm)|2) e−Sωm∫

D[ψ+ψ−](ωm) e−Sωm

×
∫

D[ψ+ψ−](ωn6=m) e−S
′∫

D[ψ+ψ−](ωn6=m) e−S′
.

This equation can be further simplified as

sin2(θ/2)

[∫
dψ+(ωm) dψ∗

+(ωm)|ψ+(ωm)|2 e−T E+|ψ+(ωm)|2∫
dψ+(ωm) dψ∗

+(ωm) e−T E+|ψ+(ωm)|2

×
∫

dψ−(ωm) dψ∗
−(ωm) e−T E−|ψ−(ωm)|2∫

dψ−(ωm) dψ∗
−(ωm) e−T E−|ψ−(ωm)|2

]

+ cos2(θ/2)

[∫
dψ−(ωm) dψ∗

−(ωm)|ψ−(ωm)|2 e−T E−|ψ−(ωm)|2∫
dψ−(ωm) dψ∗

−(ωm) e−T E−|ψ−(ωm)|2

×
∫

dψ+(ωm) dψ∗
+(ωm) e−T E+|ψ+(ωm)|2∫

dψ+(ωm) dψ∗
+(ωm) e−T E+|ψ+(ωm)|2

]
.

Thus, the solution of above equation yields

〈
|φ3(ωm)|2

〉
=

1

T

[
sin2(θ/2)

E+

+
cos2(θ/2)

E−

]
=

4

T (4α2α3 − J2
23)

[
(α2 + α3)

2
− cos θ

2

√
(α2 − α3)2 + J2

23

]
.
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Use of the definition in equation (F.1) simplifies this equation to

〈
|φ3(ωm)|2

〉
=

4α2

T (4α2α3 − J2
23)

. (F.7)

Thus, the constraint for φ3(ωm) is

T
∑
ωm

4α2

(4α2α3 − J2
23)

= 1 ,

which is∫ ∞

0

(ε2 + γ2ω)dω

(ε2 + γ2ω)(ε3 + γ3ω)− J2
23

4

= π (F.8)

at zero temperature. This integral is solved by defining

(ε2 + γ2ω)/γ2γ3

ω2 + (ε2γ3 + γ2ε3)ω/γ2γ3 + (4ε2ε3 − J2
23)/4γ2γ3

=
A′

B′ + ω
+

C ′

D′ + ω

such that

A′ + C ′ =
1

γ3

, A′D′ +B′C ′ =
ε2
γ2γ3

B′D′ =
4ε2ε3 − J2

23

4γ2γ3

, B′ +D′ =
ε2
γ2

+
ε3
γ3

. (F.9)

Thus,

B′ = B =
1

2

(
ε2
γ2

+
ε3
γ3

)
+

1

2

√(
ε2
γ2

− ε3
γ3

)2

+
J2

23

γ2γ3

,

D′ = D =
4ε2ε3 − J2

23

4γ2γ3B
,

A′ =
Bγ2 − ε2

γ2γ3(B −D)
, C ′ =

ε2 − γ2D

γ2γ3(B −D)
. (F.10)

Therefore, the integral in equation (F.8) is

∫ Λ

0

A′

B + ω
dω +

∫ Λ

0

C ′

D + ω
dω = π .
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The solution of this equation is

A′ ln

(
B + Λ

B

)
+ C ′ ln

(
D + Λ

D

)
= π .

Because Λ is much greater than B and D, this equation can be reduced to

A′γ3 ln

(
D

B

)
+ ln

(
Λ

D

)
= πγ3 , (F.11)

where the definition of A′+C ′ in (F.9) is used. Thus, this equation gives the constraint

for site 3.

The sum of the constraints at sites 2 and 3 (i.e., equations (F.6) and (F.11)

respectively) gives

π(γ2 + γ3) = 2 ln Λ + (Aγ2 + A′γ3 − 2) lnD − (Aγ2 + A′γ3) lnB .

The use of definitions of A, A′ and B + D in equations (F.5), (F.10), and (F.4)

respectively modifies the above equation to

π(γ2 + γ3) = ln
Λ2

BD
.

Thus, the effective distance from the critical point (i.e., equation (65)) in terms of

damping coefficients at sites 2 and 3, and in terms of cut-off frequency is

2
ε2ε3 − J2

23/4

J23

= 2
γ2γ3Λ

2e−π(γ2+γ3)

J23

, (F.12)

in which BD is defined as in equation (F.4).
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The thermal average of φ2(ωm) yields the constraint at site 2. Thus, for the

functional S defined in equation (99), it is

〈
|φ2(ωm)|2

〉
=

∫
|φ2(ωm)|2 dφ2(ωn) dφ∗2(ωn) dφ3(ωn) dφ∗3(ωn) e

−S∫
dφ2(ωn) dφ∗2(ωn) dφ3(ωn) dφ∗3(ωn) e

−S .

Equation (101) yields this average in eigenbasis ψ+ and ψ−:∫
D[ψ+ψ−](ωn) (cos2(θ/2)|ψ+(ωm)|2 + sin2(θ/2)|ψ−(ωm)|2) e−S′∫

D[ψ+ψ−](ωn) e−S
′

with S ′ as defined in equation (102). For a frequency ωm, this equation is reduced to∫
D[ψ+ψ−](ωm)[cos2(θ/2)|ψ+(ωm)|2 + sin2(θ/2)|ψ−(ωm)|2] e−Sωm∫

D[ψ+ψ−](ωm) e−Sωm

×
∫

D[ψ+ψ−](ωn6=m) e−S
′∫

D[ψ+ψ−](ωn6=m) e−S′

with Sωm = T (E+|ψ+(ωm)|2+E−|ψ−(ωm)|2). The solution of the first term is obtained

by using equation (C.3), which expresses the thermal average as

〈
|φ2(ωm)|2

〉
=

1

T

[
sin2(θ/2)

E−
+

cos2(θ/2)

E+

]
=

4

T (4α2α3 − J2
23)

[
(α2 + α3)

2
+

cos θ

2

√
(α2 − α3)2 + J2

23

]
,

where α2 is equal to ε2 + γ2|ωn|2/z0 and α3 is equal to ε3 + γ3|ωn|2/z0 , and

cos θ =
α3 − α2√

(α2 − α3)2 + J2
23

. (G.1)

Thus,

〈
|φ2(ωm)|2

〉
=

4α3

T (4α2α3 − J2
23)

. (G.2)

Therefore, the constraint at site φ2(ωm) is

T
∑
ωm

4α3

(4α2α3 − J2
23)

= 1 .
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At absolute zero, this equation becomes an integral:∫ ∞

0

(ε2 + γ2ω
2/z0)dω

(ε2 + γ2ω2/z0)(ε3 + γ3ω2/z0)− J2
23

4

= π . (G.3)

This equation is solved by defining

(ε3 + γ3ω
y)/γ2γ3

ω2y + (ε2γ3 + γ2ε3)ωy/γ2γ3 + (4ε2ε3 − J2
23)/4γ2γ3

=
A

B + ωy
+

C

D + ωy
,

where y is equal to 2/z0. The variables A, B, C, and D are similar to those defined

in equation (F.5) in the ohmic case above. Thus, equation (G.3) is reduced to∫ ∞

0

A

B + ωy
dω +

∫ ∞

0

C

D + ωy
dω = π .

The definition ωy = Bxy expresses the first integral above as

ABz

∫ ∞

0

dx

1 + xy
,

where z is equal to 1/y−1. In this expression, the integral is a constant c1. A similar

technique is used to solve the second integral, which yields the constraint at site 2

(i.e., equation (G.3)):

c1AB
z + c2CD

z = π . (G.4)

The effective distance from the critical point ε̃ is derived below using this equation,

along with the constraint at site 3. That constraint is derived using the thermal

average of φ3(ωm), which is∫
D[ψ+ψ−](ωm) (sin2(θ/2)|ψ+(ωm)|2 + cos2(θ/2)|ψ−(ωm)|2) e−S′∫

D[ψ+ψ−](ωm) e−S′

in the eigenbasis ψ+ and ψ−. The steps outlined above for calculation of the constraint
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at site 2 yield

〈
|φ3(ωm)|2

〉
=

1

T

[
cos2(θ/2)

E−
+

sin2(θ/2)

E+

]
=

4

T (4α2α3 − J2
23)

[
(α2 + α3)

2
− cos θ

2

√
(α2 − α3)2 + J2

23

]
.

Thus,

〈
|φ3(ωm)|2

〉
=

4α2

T (4α2α3 − J2
23)

, (G.5)

which uses equation (G.1). Hence,

T
∑
ωm

4α2

(4α2α3 − J2
23)

= 1 ,

which is the constraint for φ3(ωm). At absolute zero, this equation is reduced to

∫ ∞

0

(ε2 + γ2ω
2/z0)dω

(ε2 + γ2ω2/z0)(ε3 + γ3ω2/z0)− J2
23

4

= π . (G.6)

Equation (G.6) is solved by defining

(ε2 + γ2ω
y)/γ2γ3

ω2y + (ε2γ3 + γ2ε3)ωy/γ2γ3 + (4ε2ε3 − J2
23)/4γ2γ3

=
A′

B′ + ωy
+

C ′

D′ + ωy
,

where y is equal to 2/z0. The variables A′, B′, C ′, and D′ are as defined above in

equation (F.10) for the ohmic case. The steps outlined above to calculate the integrals

for site 2 yield the constraint at site 3 (i.e., equation (G.6)):

c1A
′Bz + c2C

′Dz = π . (G.7)

Definition of C in equation (F.4) and C ′ in equation (F.9) expresses equations (G.4)

and (G.7) as

γ2A(c1B
z − c2Dz) + c2D

z =πγ2 and

γ3A
′(c1B

z − c2Dz) + c2D
z =πγ3
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respectively. The sum of these two equations is

π(γ2 + γ3) = (ln b− ln d)(γ2A+ γ3A
′) + 2 ln d ,

where ln b is equal to c1B
z and ln d is equal to c2D

z. Use of definition of A and A′,

given in equations (F.5) and (F.10) respectively, expresses this equation as

π(γ2 + γ3) =
2(B ln b−D ln d)

B −D
+

(
γ2ε3 + ε2γ3

γ2γ3(B −D)

)
ln

(
d

b

)
.

The definition of B +D in equation (F.4) reduces this equation to

π(γ2 + γ3) =
2(B ln b−D ln d)

B −D
+

(
B +D

B −D

)
ln

(
d

b

)
,

which can be further simplified as

π(γ2 + γ3) = c1B
z0
2
−1 + c2D

z0
2
−1 . (G.8)

This equation is solved using the definitions of B and B +D in equations (F.5) and

(F.4) respectively. The following redefines B as

B =
1

2

[
X2 + J23/2

γ2

+
X3 + J23/2

γ3

+

(
(X2 + J23/2)2

γ2
2

+
(X3 + J23/2)2

γ2
3

− 2(X2 + J23/2)(X3 + J23/2) + J2
23

γ2γ3

)1/2
]
,

where the substitutions ε2 = X2 +J23/2 and ε3 = X3 +J23/2 are used. This equation

can be simplified as

B =
1

2

[(
X2

γ2

+
X3

γ3

+
J23

2

(
1

γ2

+
1

γ3

))

+

((
X2

γ2

− X3

γ3

)2

+ J23

(
X2

γ2
2

+
X3

γ2
3

− X2 +X3

γ2γ3

)
+
J2

23

4

(
1

γ2

+
1

γ3

)2)1/2
]
.

The term
(
X2

γ2
− X3

γ3

)2

is discarded because it is small. Thus, this equation is reduced
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to

B =
1

2

[(
X2

γ2

+
X3

γ3

+
J23

2

(
1

γ2

+
1

γ3

))

− J23

2

(
1

γ2

+
1

γ3

)(
1 +

4
(
X2

γ2
2

+ X3

γ2
3
− X2+X3

γ2γ3

)
J23

(
1
γ2

+ 1
γ3

) )1/2
]
.

The expansion of the square root term yields

B =
1

2

[
X2

γ2

+
X3

γ3

− X2γ3

γ2(γ2 + γ3)
− X3γ2

γ3(γ2 + γ3)
+
X2 +X3

(γ2 + γ3)

]
.

Thus,

B =
X2 +X3

γ2 + γ3

. (G.9)

Similarly, D is equal to

1

2

( ε2
γ2

+
ε3
γ3

)
−

√(
ε2
γ2

− ε3
γ3

)2

+
J2

23

γ2γ3

 ,

which uses the definition of B + D in equation (F.4) and B in equation (F.5). The

steps outlined above in the simplification of B express D as

D =
X2 +X3

γ2 + γ3

. (G.10)

Thus, equations (G.9) and (G.10) express equation (G.8) as

cπ(γ2 + γ3)
z0/2 = (X2 +X3)

z0/2−1 . (G.11)
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