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ABSTRACT

This dissertation studies the effects of quenched disorder on classical, quantum

and nonequilibrium phase transitions. After a short introduction which covers the basic

concepts of phase transitions, finite-size scaling and random disorder, the dissertation

focuses on four separate but related projects. First, we investigate the influence of quenched

disorder with long-range spatial correlations on the nonequilibrium phase transitions in

the contact process. We show that the long-range correlations increase the probability to

find rare atypical regions in the sample. This leads to enhanced Griffiths singularities and

changes the universality class of the transition.

Project 2 and 3 focus on disorder at first-order phase transitions. In project 2, we

analyze the phase transitions of a classical Ashkin-Teller magnet. We demonstrate that the

first-order classical phase transition is destroyed by disorder, and the resulting continuous

transition belongs to the clean two-dimensional Ising universality class with logarithmic

corrections.

Project 3 investigates the fate of the first-order quantum phase transition in the

quantumAshkin-Teller model by large-scaleMonte Carlo simulations. We find that disorder

rounds the first-order quantum phase transition just as in the classical case. The resulting

critical behavior depends on the strength of the inter-color coupling in the quantum Ashkin-

Teller model. This leads to two different regimes, the weak and strong coupling regimes,

both of which feature infinite-randomness critical behavior but in different universality

classes.

Finally, we study the quantum phase transition of a disordered nanowire from

superconductor to metallic behavior. We show that the critical behavior is of infinite-

random type and belongs to the random transverse-field Ising universality class as predicted

by strong disorder renormalization group results.
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SECTION

1. INTRODUCTION

1.1. THERMAL AND QUANTUM PHASE TRANSITIONS

What is a phase? A phase is a state of matter whose properties are uniform in space

(at a macroscopic level) and time-independent. Moreover, its qualitative characteristics

do not change upon trivial (infinitesimal) changes of external parameters such as pressure,

temperature, magnetic field, and chemical composition. Simple examples of phases are the

three phases of water: solid, liquid and gas. Which phase (solid, liquid or gas) water exists

in depends on the values of the external (control) parameters (pressure and temperature) as

shown in the phase diagram in Fig. 1.1. The lines separating unique phases are called phase

boundaries. Crossing one of these lines, i.e., changing from one phase to another is called

a phase transition.

A phase transition is therefore a qualitative change in the state of a system in response

to changes of one or more of the control parameters of the system. In thermodynamic

equilibrium systems, it corresponds to a nonanalyticity of the free energy as function of the

control parameters. Phase transitions can be divided into two different kinds: first-order

and continuous (second-order) transitions. In Fig. 1.1, when tuning temperature and/or

pressure, the transitions between the various phases of water involve phase coexistence.

This means that the two distinct phases coexist at the phase boundary. Such transitions

generally involve absorbtion or release of a nonzero amount of energy, called the latent

heat, that is necessary to transform one phase into the other. Transitions with phase

coexistence and latent heat are called first-order (discontinuous) phase transitions. The

transitions of water are all of first-order, except for one single point, the so-called critical
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Fig. 1.1. Schematic phase diagram of water. The solid lines indicate first-order phase
transitions. The gas-liquid phase boundary ends in a critical point at which the phase
transition is continuous. The intersection of three lines is referred to as the triple point at
which all three phases coexist.

point. At this point, the boundary between the gas and liquid phases ends and the gas and

liquid phases become indistinguishable. Transitions occurring at such a critical point are

called continuous (second-order) phase transitions; they do not display phase coexistence

or latent heat [1].

1.1.1. Landau Theory of Phase Transitions. One of the earliest theories devel-

oped to understand and describe phase transformations is Landau theory. Landau [2, 3, 4, 5]

suggested a series of postulates to approximate the free energy FL of a system. He pro-

posed that the free energy can be described as a function of the order parameter, which

is a macroscopic thermodynamic observable that has a nonzero value in one phase (the

ordered phase) and vanishes in the other phase (the disordered phase). For example, for the

ferromagnetic phase transition, the order parameter is the total magnetization m, which has

a non-zero value in the ferromagnetic phase (ordered phase) and is zero in the paramagnetic

phase (disordered phase), as shown in Fig. 1.2.
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Fig. 1.2. Schematic of magnetization m vs. temperature T at a ferromagnetic phase
transition. If the temperature T is below the critical temperature Tc, the substance has a
finite (non-zero) value of the magnetization m (ferromagnetic phase). When T > Tc, then
the magnetization m vanishes (paramagnetic phase).

According to Landau’s postulate, the free energy FL close to the transition can be

expanded as a power series of the order parameter m

FL(m) = FL(0) − hm + rm2 + km3 + um4 + O(m5) , (1.1)

where h is the external field. The values of the coefficients r , k, and u depend only on the

external parameters (pressure, temperature, etc.), but not on the order parameter m itself.

The correct physical value of the order parameter m can be obtained by minimizing the free

energy. Landau theory can describe both first-order and continuous transitions, based on

the values of the coefficients. If the external field vanishes (h = 0) and k = 0 as well as

u > 0, the system undergoes a continuous phase transition. Fig. 1.3 shows the free energy

as a function of m for several values of the coefficient r . For r < 0, the free energy has two

minima which are located at (ignoring high-order terms)
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Fig. 1.3. Schematic of the Landau free energy FL as a function of the order parameter m
for various value of r .

m = ±
√
−r
2u

, (1.2)

putting the system into the ferromagnetic (ordered) phase (i.e., m , 0). If r > 0, the

minimum of the free energy is at m = 0, i.e., the system is in the paramagnetic (disordered)

phase.

The phase transition between these phases occurs at r = 0. Consequently, r can

be considered as a measure of the distance from the transition point. Because the order

parameter m in Eq. (1.2) is a continuous function of r , the transition is a continuous one.

The critical exponent β of the order parameter of a phase transition is generally defined as

m ∼ (−r)β . (1.3)
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According to Eq. (1.2), Landau theory predicts the value β =
1
2
identical to the

value in simple mean-field theories [6, 7]. Other exponents can be found analogously and

also take mean-field values, as presented in Table 1.1. If k , 0, Landau theory characterizes

a first-order transition, where the order parameter m changes suddenly (discontinuously)

from m = 0 to a non-zero m at the transition point.

In Landau theory, the fluctuations of the order parameter about its mean are ne-

glected. Is this justified close to the critical point? In general, fluctuations of the order

parameter increase with decreasing dimensionality d of the system. Thus, the fluctuations

lead to two different critical dimensionalities, the upper (d+c ) and lower (d−c ) critical dimen-

sions. Landau theory is valid for high dimensions, i.e., d ≥ d+c . Here the fluctuations are

insignificant, and the critical exponents become independent of d and take their mean-field

values. However, Landau theory breaks down below d+c . For d+c > d > d−c , the fluctuations

can change the critical behavior of the phase transition from Landau’s predictions, but the

phase transition itself survives. If d ≤ d−c , the fluctuations become extremely strong, and

therefore destroy the phase transition.

The failure of Landau theory below d+c due to the fluctuations of order parameter

can be overcome by writing the partition function as a path integral

Z =
∫

D[φ(®x)]e−FLGW , (1.4)

Table 1.1. Critical exponents in Landau theory

exponent definition value
Specific heat α C ∝ |r |−α α = 0
Susceptibility γ χ ∝ |r |−γ γ = 1

Order parameter β m ∝ (−r)β β =
1
2

Critical isotherm δ h ∝ |m|δsgn(m) δ = 3

Correlation length ν ξ ∝ |r |−ν ν =
1
2

Correlation function η G(x) ∝ |x |−d+2−η η = 0
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where FLGW is the Landau-Ginzburg-Wilson free energy which is a functional of the

fluctuating field φ(®x)

FLGW [(φ(®x)] =
∫

dd ®x{−hφ(®x) + rφ2(®x) + kφ3(®x) + uφ4(®x) + [∇φ(®x)]2} . (1.5)

The average 〈φ(®x)〉 equals the order parameter m

m = 〈φ(®x)〉 =
1
Z

∫
D[ϕ(®x)]ϕ(®x)e−FLGW . (1.6)

In contrast to Landau theory, the Eqs. (1.4) and (1.5) are not exactly solved. However, they

can be studied by sophisticated modern techniques, such as renormalization group methods.

1.1.2. The Scaling Hypothesis and Renormalization Group. Singular behavior

of thermodynamic quantities close to the critical point is characterized by a set of critical

exponents (α, γ, β, ...), see Table 1.1. These power-law relations are indicative of scaling

behavior and are an important part of critical phenomena. How can one understand scaling?

The critical point (r = 0) of a continuous phase transition is characterized by a diverging

order parameter correlation length, ξ →∞, for r → 0

ξ ∼ |r |−ν . (1.7)

Here, ν is the correlation length critical exponent. Based on the scaling hypothesis, the

only relevant length scale in the vicinity of a critical point is the correlation length ξ [8].

Thus, if all lengths in the system are rescaled by an arbitrary factor b and, at the same

time, the external parameters are adjusted such that ξ retains its value, this does not lead

to changes of the physical properties. According to the scaling hypothesis, this can be

achieved by rescaling the distance from criticality r as rbyr and the field h as hbyh , where

b is an arbitrary length scale factor, and yr and yh are further critical exponents. Rescaling
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by the scale factor b therefore leads to the homogeneity formula

f (r, h) = b−d f (rbyr, hbyh ) , (1.8)

where the free energy density f changes by a volume factor bd . Similarly, the correlation

length rescales by a factor b−1[9]

ξ(r, h) = bξ(rbyr, hbyh ) . (1.9)

By choosing the scale factor to be b = r−1/yr , and substituting it in Eqs. (1.8) and

(1.9), we obtain scaling relations for the free energy and the correlation length

f (r, h) = rd/yr fS(hr−yh/yr ) , (1.10)

ξ(r, h) = r−1/yr ξS(hr−yh/yr ) , (1.11)

where fS and ξS are scaling functions. In the absence of a field (h = 0), Eqs. (1.10) and

(1.11) lead to

f ∼ |r |d/yr , (1.12)

ξ ∼ |r |−1/yr ∼ |r |−ν . (1.13)

Thus, the exponent ν is equal to 1/yr .
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By taking the appropriate derivatives of the free energy (Eq. 1.8), other observables,

for instance, the order parameter m, susceptibility χ and specific heat C, can be found. The

order parameter m fulfills the homogeneity relation

m(r, h) = −(∂ f /∂h) = byh−dm(rb1/ν, hbyh ) , (1.14)

the susceptibility χ reads

χ(r, h) = (∂m/∂h) = b2yh−d χ(rb1/ν, hbyh ) , (1.15)

and the specific heat C fulfills

C(r, h) = −T(∂2 f /∂2r) = b2/ν−dC(rb1/ν, hbyh ) . (1.16)

Determining the thermodynamic critical exponents for the above observables is pos-

sible. By setting the scale factor to b = r−ν and the field to zero (h = 0), the magnetization

leads to

m ∼ r (d−yh)ν ∼ r β , (1.17)

where β = (d − yh)ν is the order parameter critical exponent. Analogously, by setting

b = h−1/yh at the criticality (r = 0), the magnetization reads

m ∼ h(d−yh)/yh ∼ h1/δ , (1.18)

where δ =
yh

d − yh
is the critical isotherm exponent. Similarly, applying the corresponding

conditions, one obtains the exponents of susceptibility γ and the specific heat α

χ ∼ r (d−2yh)ν ∼ r−γ , (1.19)
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C ∼ rdν−2 ∼ r−α , (1.20)

where γ = (2yh − d)ν which is called Fisher’s scaling relation [10], and α = 2 − dν which

is known as Josephson’s identity [11].

Also, by combining these scaling relations for the critical exponents, one can derive

other scaling laws,viz., Widom’s and Rusbrook’s scaling relations, respectively [9, 12]

γ = 2 − α − 2β , (1.21)

γ = β(δ − 1) . (1.22)

These relations imply that there are only two independent exponents.

Scaling relations are very useful for determining the transition point of a system

within a computer simulation. For example, the Binder cumulant g is defined as

g = 1 −
〈m4〉

3〈m2〉2
. (1.23)

This quantity has (scale) dimension zero, which results in the scaling form

g(r, h) = g(rb1/ν, hbyh ) . (1.24)

(Note that the power of b in front of g on the r.h.s. is zero). More details about employing

this quantity to analyze the critical behavior will be given in Sec. 1.3.



10

Critical phenomena feature the concept of universality classes. This means that the

critical exponents are identical for entire classes of phase transitions. In other words, the

critical exponents depend only on the dimensionality of the system and the symmetry of the

order parameter, but not on microscopic details.

As discussed previously, the physics close to a continuous phase transition is dom-

inated by fluctuations on large length scales. A systematic approach to analyze the long-

distance and long-time behavior is provided by the renormalization group method (RG)

[13, 14]. This approach essentially eliminates or integrates out the microscopic short-

distance degrees of freedom that are irrelevant to the critical behavior, but keeps the

long-distance fluctuations. The critical point is characterized by the RG method as a fixed

point of this scale transformation. By analyzing these fixed points, precise predictions for

the critical exponents of various thermodynamic quantities close to the critical point can be

obtained. Moreover, the renormalization group method can be applied to confirm the scal-

ing hypothesis and to explain the concept of universality classes for the critical exponents

[1].

1.1.3. QuantumPhase Transitions. All phase transitions that have been discussed

in the previous sections occur at nonzero temperatures, and they are often driven by changes

in the temperature. A different class of phase transition can exist at the absolute zero

of temperature due to the variation of non-thermal external parameters like pressure or

magnetic field. This kind of transitions is usually called quantum phase transitions (QPT)

[15] because they are governed by quantum fluctuations due to Heisenberg’s uncertainty

principle, rather than by thermal (classical) fluctuations. Quantum phase transition have

attracted great interest in the last decades by both experimentalists and theorists in condensed

matter physics.
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Consider the quantum Ising model (transverse-field Ising model) as an example. It

consists of a lattice occupied by S =
1
2
spins with Hamiltonian

H = −J
∑
〈i j〉

σz
i σ

z
j − h

∑
i

σx
i , (1.25)

where σx
i and σz

i are the Pauli matrices of the x and z spin operator components at site i.

The first term is the nearest-neighbor interaction which prefers ferromagnetic order in the

z-direction, and a transverse magnetic field in the x-direction is contained in the second

term. Since σx
i can decomposed into the spin-flip operators

σx
i = σ

−
i + σ

+
i , (1.26)

the transverse magnetic field leads to random flipping of the spins. These spin flips can

destroy the ferromagnetic phase when the transverse magnetic field is sufficiently high,

even if the temperature is zero (T = 0). The transition between the ferromagnetic and

paramagnetic phases at zero temperature is thus characterized by quantumfluctuationswhile

thermal fluctuations are absent. In other words, at zero temperature, quantum mechanics

plays a significant role for the critical behavior. In contrast, it does not play any role if

the transitions occur at nonzero temperature. In this case, thermal fluctuations become

dominant for the critical behavior of the system [16].

Similar to classical (thermal) phase transitions, quantum phase transitions can be

split into first-order and continuous (second-order) phase transitions. In second-order

quantum phase transitions, the correlation length ξ and the correlation time ξt diverge as

ξ ∼ r−ν , (1.27)

ξt ∼ ξ
z , (1.28)
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when the critical point is approached. Here, z is the dynamical critical exponent. A

schematic phase diagram of a system close to a quantum critical point (QCP) is shown

in Fig. 1.4. One needs to distinguish two different types of fluctuations: thermal and

quantum fluctuations. At zero temperature, quantum fluctuations are dominant, because the

quantum energy is greater than the thermal energy, i.e., ~ωc � kBT . In the opposite case,

~ωc � kBT , the fluctuations are of thermal character. Because the divergence of ξt at the

critical point leads to a vanishing frequency scale ωc ∼ ξ
−1
t (and with it, a vanishing energy

scale ~ωc), thermal fluctuations dominate the critical behavior at any nonzero T .

Consequently, all continuous transitions that occur at any non-zero temperatures

are governed entirely by thermal fluctuations. Thus all these transitions are classical phase

transitions. On the other hand, at precisely zero-temperature, only quantum fluctuations are

present, leading to quantum phase transitions.

Pc

quantum criticalT

P

QCP
0

quantum
disordered

ordered

thermally
disordered

classical
critical

kBT > c

Fig. 1.4. Schematic phase diagram in the vicinity of a quantum critical point (QCP) located
at Pc. The horizontal axis is the non-thermal control parameter P which can changes the
system by means of the zero-temperature (quantum) phase transition, while the vertical axis
is the temperature T . The solid line is the boundary between finite-temperature phases,
near to this line the critical behavior is classical. The dashed lines are the borders of the
quantum critical region then are given by kBT ∼ ~wc.
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In Fig. 1.4, the ordered region is destroyed by thermal fluctuations at high tem-

peratures; quantum mechanics is unimportant at such transitions. In contrast, quantum

mechanics is relevant at zero temperature when the quantum fluctuations destroy the long-

range order. Therefore, the quantum disordered region appears at the disordered side of the

quantum critical point at low temperatures where the thermal influences are insignificant.

Above the quantum critical point (p ≈ pc) is the region known as the quantum critical

region, which is bounded by crossover lines kBT ∼ ~ωc. Here, the system is critical with

respect to p, and the critical singularities are cut off by the temperature.

What is the relation between quantum and classical critical behavior? This question

can be answered by the concept known as the quantum-classical mapping. To understand

this, the main starting point is the partition function

Z = Tre−(Hkin+Hpot )/kBT . (1.29)

In classical statistical mechanics, the kinetic (Hkin) and potential (Hpot) parts of the

Hamiltonian H = Hkin + Hpot of the system commute, so the partition function factorizes,

i.e., Z = ZkinZpot . Because the contribution of kinetic part of the Hamiltonian to the free

energy derives from a product of simple Gaussian integrals which do not display any singu-

larity, classical phase transitions can be studied by using time-independent theories such as

Landau-Ginzburg-Wilson theory (Eq. 1.5), which generally exists in d space dimensions.

However, in quantum mechanics, the kinetic and potential parts of the Hamiltonian

usually do not commute. Thus, the partition function does not factorize (Z , ZkinZpot).

Consequently, theories of quantum phase transitions must treat space and time at the same

footing. The canonical density operator e−βH is identical to a time-evolution operator in

imaginary time τ when β = τ = it/~, where β = 1/kBT is the inverse temperature, and t

denotes the real time. Using the Trotter formula [17], the partition function can be written

as a path integral over space and time dependent fields . For instance, a quantum version of
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the Landau-Ginzburg-Wilson functional (Eq. 1.5) can be expressed as

FLGW [φ] =

∫ ∫ β

0
dτdd x{−hφ(x, τ) + rφ2(x, τ) + kφ3(x, τ) + uφ4(x, τ)

+[∇φ(x, τ)]2 + [∂τφ(x, τ)]2}. (1.30)

The imaginary time τ therefore acts like an extra space dimension with infinite

extension at zero temperature. Thus, a quantum phase transition in d space dimensions is

equivalent to a classical phase transition in d + 1 dimensions. This is usually known as

quantum-classical mapping. An explicit example of such amapping from the 1-dimensional

transverse-field Ising model to 2-dimensional classical Ising model is shown in next section.

The quantum-classical mapping also allows us to generalize the scaling hypothesis

to QPTs. According to Eq. (1.28), time scales as length to the power of z. Thus, in the

quantum case, the homogeneity relation (1.8) for the free energy density generalizes to

f (r, h) = b−(d+z) f (rbyr, hbyh ) . (1.31)

Moreover, we can add the temperature as a parameter in the quantum free en-

ergy. Temperature scales like an energy which scales like an inverse time. The quantum

homogeneity relation (1.31) can therefore be generalized to finite temperatures as

f (r, h,T) = b−(d+z) f (rbyr, hbyh,Tbz) . (1.32)

Analogously, correlation length (1.9), magnetization (1.14), and susceptibility (1.15) can

be generalized to the quantum case as

ξ(r, h,T) = bξ(rbyr, hbyh,Tbz) , (1.33)
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m(r, h,T) = byh−(d+z)m(rb1/ν, hbyh,Tbz) , (1.34)

χ(r, h,T) = b2yh−(d+z)χ(rb1/ν, hbyh,Tbz) . (1.35)

1.1.4. Transverse-Field Ising Model. To explain the procedures of the quantum-

classical mapping, let us take the one-dimensional quantum Ising model in a transverse field

and map it to the two-dimensional classical one (the procedure is similar to Feynman’s path

integral [18]). The Hamiltonian of the one-dimensional transverse-field Ising model reads

(see Eq. 1.25)

H = −J
∑
〈i〉

σz
i σ

z
i+1 − h

∑
i

σx
i , (1.36)

where J is the ferromagnetic interaction between nearest-neighbor spins in the z-direction,

and h is the transverse magnetic field in the x-direction. The ground state of the system

(ferromagnetic or paramagnetic behavior) depends on the values of the J and h in the

Hamiltonian. For J � h, the system is a paramagnet. However, the system is in a

ferromagnetic state with nonzero z-magnetization when J � h. Thus, the paramagnetic

and ferromagnetic phases must be separated by a quantum phase transition at J ∼ h.

As we mentioned in the previous section, the starting point to map the system from

quantum to classical is the partition function (Eq. 1.29). Because the partition function

can not be factorized into interaction and transverse field parts, we employ the Trotter

decomposition [17], i.e., eΦ+Ψ = lim
N→∞

(
eΦ/N eΨ/N

)N
to write the partition function as

Z = Tr lim
N→∞

[
e
δτ J

∑
〈i j 〉

σz
i σ

z
j

e
δτh

∑
i
σx
i

]N

, (1.37)
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where δτ = β
N . We now insert complete-sets of σx and σz eigenstates (between the factors).

After some algebra, we can express the partition function as

Z = lim
N→∞

∑
Si,n

e
δτ J

∑
〈i j 〉,n

Si,nSj,n

e
Kτ ∑

i,n
Si,nSi,n+1

, (1.38)

where Si,n is the σz eigenvalue of the spin at site i and imaginary time index n, and

Kτ = 1
2 ln[coth(δτh)] is the interaction in the imaginary time direction. Eq. (1.38) is a

representation of the partition function of the quantum Ising model that is identical to a

classical Ising model in 1+1 dimensions. Thus, the quantum Hamiltonian (Eq. 1.36) is

mapped to a classical one, with two interaction parameters: δτJ in the space dimension and

Kτ in the time-like dimension as

Hclassical

Tclassical
= −δτJ

∑
〈i j〉,n

Si,nSj,n − Kτ
∑
i,n

Si,nSi,n+1 , (1.39)

where Tclassical is the temperature of the mapped classical system. The critical behavior

of the classical two-dimensional Ising Hamiltonian is well known. It was solved exactly

by L. Onsager [19]. Thus, the universality class of the quantum phase transition of one-

dimensional transverse-field Ising model is identical to that of the two-dimensional classical

Ising model.

1.2. NON-EQUILIBRIUM PHASE TRANSITIONS

So far, we have discussed phase transitions in equilibrium systems. However, many

phenomena happening in our lives (such as weather behavior or spreading of an epidemic)

cannot be described as equilibrium patterns. Transitions can occur during the time evolution

between different nonequilibrium steady states. Such transitions are called non-equilibrium

phase transitions [20, 21, 22].
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Although there are many differences between equilibrium and non-equilibrium sys-

tems, some characteristics are shared including scaling and critical behavior near a critical

point. One of the prototypical models introduced to study non-equilibrium phase transitions

is the contact process by Harris [23].

The contact process (Fig. 1.5) is defined on d-dimensional hypercubic lattice. It

can be comprehended as a model for the spreading of a disease. Any site in the lattice

can be associated with either the active (infected) or the inactive (healthy) state. The time

evolution of the contact process is a Markov process [24] in continuous time. For each

active (infected) site, there are two possible processes: (i) Active site can spontaneously

heal (becoming inactive (healthy)) with healing rate µ. Or, (ii) active site can infect a

healthy (inactive) neighbor site, which is converted to an active site with infection rate λ.

The parameters µ and λ are the control parameters of the contact process.

Depending on the values of λ and µ, the behavior of the contact process can be

determined. For large λ, i.e., λ/µ � 1, the infection processes take control, and there is

a high probability for many sites to be in the active state. In this phase (active phase),

the density of active sites remains nonzero in the long-time limit, lim
t→∞

ρ(t) = ρs > 0. In

contrast, for small λ (λ/µ � 1), the annihilation is the dominating processes of the system.

All sites will eventually reach the inactive state. Thus the steady-state density ρs = 0.

This phase, the inactive phase, is an absorbing phase, because the system cannot leave it

anymore. The transition between the active and inactive phases which occurs at a critical

value λc of the infection rate is therefore called an absorbing state phase transition. Close

to the critical point λc, the order parameter ρs for the contact process displays a power-law

relation

ρs ∼ |λ − λc |
β , (1.40)
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Fig. 1.5. Schematic of contact process in one-dimension. Infected (active) sites infect their
neighbors at rate λ/2. Active sites can spontaneously become inactive (healthy) with healing
rate µ.

where β is the exponent of the order parameter. Similar to equilibrium phase transitions,

the correlation length ξ increases as a power of the distance from criticality

ξ ∼ |λ − λc |
−ν , (1.41)

where ν is the correlation length exponent. Analogously, the correlation time ξt behaves as

ξt ∼ |λ − λc |
z , (1.42)

where z is the dynamical critical exponent. By finding these three exponents ( β, ν and

z), we can determine the universality class of the phase transition in the contact process

[25, 26]∗.
∗General non-equilibrium phase transitions have four independent exponents [22], but the universality

class of the contact process (directed percolation) has only three.
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1.3. FINITE-SIZE SCALING

When studying any macroscopic system by computer simulations to analyze the

critical behavior, invariably one must make an approximation and simulate a small model

system. This introduces systematic errors known as finite-size effects. How important

are these finite-size effect for a continuous phase transition point? A real phase transition

(singularity in free energy) can only exist in infinite systems, i.e., L → ∞. As a result,

in finite systems, peaks in observables are rounded rather than having divergences. These

peaks shift, narrow and increase in height with increasing L. A systematic way of dealing

with finite-size effects is provided by finite-size scaling theory [27, 28, 29]. This theory

supposes the inverse linear system size L−1 can be introduced as additional system parameter

that takes the system away from the transition point (which corresponds to L →∞). Close

to a critical point, the only relevant length scale is the correlation length of infinite system

ξ∞. Therefore the finite-size effects must be governed only by the ratio L
ξ∞
. Now, the

classical free energy density relation (1.8) can be generalized in terms of the system size L

as

f (r, h, L) = b−d f (rb
1
ν , hbyh, Lb−1) . (1.43)

Analogously, the quantum homogeneity free energy relation (1.32) can be generalized to

f (r, h,T, L) = b−(d+z) f (rb
1
ν , hbyh,Tbz, Lb−1) . (1.44)

The scaling form of the classical free energy density (1.43) can be used to derive

finite-size scaling forms of different observables by adjusting the arbitrary scale factor b.

Setting b = L and h = 0, this leads to the scaling form

f (r, L) = L−d
Φ f (rL

1
ν ) , (1.45)
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where Φ f (rL
1
ν ) is a dimensionless scaling function which can be used to find how the

critical point shifts as a function of the system size L. For finite systems, the critical point

corresponds to a feature in Φ f at some nonzero argument xc = rcL
1
ν , so the transition

temperature Tc(L) is shifted from the bulk value T0
c (L →∞) through

Tc(L) − T0
c ∼ rc = xcL−

1
ν
. (1.46)

Moreover, the scaling form of Binder cumulant (1.24) also can be generalized to

finite-size scaling as

g(r, L) = g(rL
1
ν ) . (1.47)

The finite-size scaling form of Binder cumulant is a very important relation to determine

the critical point in many isotropic systems. Because g has scale dimension zero, its curves

for various L cross at critical temperature Tc, see Fig. 1.6

g(0, L) = g(0), (1.48)

because at the critical temperature r = T−Tc
Tc
= 0. In anisotropic systems (where not all

directions are equivalent), for example those arising from the quantum-classical mapping,

the situation is more complicated. In some systems, the finite-size scaling of Binder

cumulant is given by conventional scaling

g(r, L, Lτ) = g(rL
1
ν , Lτ/Lz) . (1.49)
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Fig. 1.6. Schematic of Binder cumulant g vs. temperature T for different system size L
in classical Ising model. All curves cross at the same temperature that corresponds to a
critical temperature Tc.

Other systems show activated scaling

g(r, L, Lτ) = g(rL
1
ν , ln(Lτ)/Lψ) , (1.50)

where L and Lτ are the linear system sizes in the space and time-like directions, respectively.

These two scaling forms are very useful to study the critical behavior in many quantum

systems. Fig. 1.7 compares the behavior of Binder cumulant with conventional and activated

scaling. For fixed L and T , the Binder cumulant g has a maximum (peak) as a function

of Lτ at position Lmax
τ . The position of the peak yields the optimal sample shape. Thus,

at the critical temperature, peaks of Binder cumulant should have the same value which is

independent of L as shown in Fig. 1.7a.

For conventional power-law dynamic scaling, the curves of Binder cumulant for

different L should collapse onto each other when it plotted as a function of Lτ/Lmax
τ .

However, for activated scaling the Binder cumulant curves should collapse when plotted

as a function of ln(Lτ)/ln(Lmax
τ ). Fig. 1.7b shows that the random quantum Ising model

follows the activated scaling rather than conventional scaling.
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Fig. 1.7. Behavior of Binder cumulant in the random quantum Ising model. (a) Binder
cumulant as a function of Lτ for several L at the critical temperature. (b) Scaling plot of
the Binder cumulant at Tc. Main panel: Power-law scaling g vs Lτ/Lmax

τ . Inset: Activated
scaling g vs ln(Lτ)/ln(Lmax

τ ).

Finite-size scaling theory plays an important role in studying and analyzing the

computer simulation data of phase transitions. Critical exponents of the system can be

determined by fitting the data from the simulations to finite-size scaling forms. Thus, the

critical behavior becomes easy to determine.

1.4. DISORDERED PHASE TRANSITIONS

In condensed matter physics, the expressions "order" and "disorder" are used in

two different meanings. On the one hand, following Landau, an ordered state is a state

with a spontaneously broken symmetry that is usually found at low temperatures. Upon

heating, the system undergoes a phase transition into a less ordered phase that restores the

symmetry. For instance, the melting of ice restores the translational symmetry that is broken

by the crystal lattice, and the demagnetization of a metal by heating restores the broken spin

rotation symmetry, see Figs. (1.1) and (1.2).
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On the other hand, the terms "order" and "disorder" refer to clean (pure) and dirty

systems, respectively. The latter kind of disorder can have many different origins including

vacancies, impurity atoms, crystal defect, or other kinds of imperfections. Based on the time

dependence, the disorder can be classified into two types: quenched (time-independent)

and annealed (time-dependent) disorder [30]. This work focuses only on the effects of

time-independent disorder. What are the influences of such disorder on phase transitions?

1.4.1. Quenched Disorder. The influence of quenched disorder on the behavior of

phase transitions and critical points has attracted considerable attention [31, 32, 33]. The

simplest, most straightforward type of disorder is random-mass (random-Tc) disorder. It

does not alter the symmetries of the bulk phases. Instead, it locally changes the tendency

towards one or the other phase, i.e., it changes the location of the local "critical point".

Technically, random-Tc disorder can be applied to a clean system by changing the distance

from the criticality r to a random functional of real space position,

r = r0 + δr(®x) . (1.51)

For example, the Landau-Ginzburg-Wilson functional (Eq. 1.5) in the presence of random-Tc

disorder can be written as

FLGW [(φ(®x)] =
∫

dd ®x{−hφ(®x) + [r0 + δr(®x)]φ2(®x) + kφ3(®x) + uφ4(®x) + [∇φ(®x)]2} .

(1.52)

Adding quenched disorder to a clean system that undergoes a phase transition raises

many questions concerning the stability of the transition, the order of the transition, and its

critical behavior. Criteria addressing these questions will be discussed in the next sections.
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1.4.2. Imry-MaCriterion. In the presence of quenched disorder, does a first-order

phase transition survive and remain sharp? Imry and Ma [34] introduced the answer to

this question by developing a heuristic argument to test the stability of phase coexistence

against domain formation in the presence of random-mass disorder. To understand this

argument, consider a single d-dimensional domain of the ferromagnetic phase with linear

size L embedded in a larger paramagnetic phase, as shown in Fig. 1.8. Right at a clean

first-order phase transition, the bulk free energies of the two phases agree.

Let us now introduce random-mass disorder. Based on Imry and Ma, one needs to

compare two different free energies, the free energy gain from the quenched disorder which

can be estimated from the central limit theorem

Edis ∼ Ld/2 , (1.53)

and the free energy loss due to the formation of the domain wall

Edw ∼ Ld−1 . (1.54)

According to the Imry-Ma argument, the ferromagnetic state will be stable against domain

formation if Edis < Edw. This is possible only if the dimension of the system d > 2. In this

case the formation of the domain wall becomes unfavorable, and thus, macroscopic phase

coexistence is stable against weak random-mass disorder. In contrast, quenched disorder

destroys a first-order phase transition if d ≤ 2 because the system prefers domain formation

which prevents the macroscopic phase coexistence [35].
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Fig. 1.8. Schematic of the Imry-Ma criterian.

Moreover, Aizenman and Wehr [36] proved a rigorous theorem for the existence of

domains in all dimensions d ≤ 2. Thus, the first-order phase transition can not survive in

the presence of quenched disorder. The criterion does not resolve the fate of transitions that

are destroyed by randomness. In Papers II and III, this question is studied for classical and

quantum Ashkin-Teller models.

1.4.3. Harris Criterion. In the previous section, the effects of quenched disorder

on a first-order phase transition were determined by comparing how different energies scale

with respect to the dimension of the system. However, what are the effects on a second-

order phase transition? Harris [37] addressed this inquiry by developing a criterion to test

the stability of a clean critical point of a continuous phase transition against random-Tc

disorder. He derived this criterion by considering that the system can be divided into blocks

which are independent of one another if their linear dimension is the correlation length ξ

(see Fig. 1.9). Each block j has its own local critical temperature T j
c , which depends on the

local distace from criticality, r + δr(®x) averaged over the volume ξd . These local critical

temperatures have a typical variation ∆Tc from block to block.

By comparing ∆Tc with the distance from criticality r = |T −Tc |, Harris’s argument

compares two cases: If ∆Tc > |T − Tc |, some blocks will be in one phase and some will

exist in the other phase. Thus, a uniform transition between these phases is impossible.



26

2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31

0.45

0.50

0.55

0.60

0.65

Tc

Tc TcTc

Tc

Tc

Tc

Tc Tc

Fig. 1.9. Schematic of Harris criterian.

However, the transition can be uniform when ∆Tc < |T − Tc |, where almost all the blocks

are in the same phase. Based on this argument, the condition for the stability of the clean

critical point against quenched disorder should be

∆Tc � |T − Tc | . (1.55)

The variation of the local critical temperatures ∆Tc decreases with increasing cor-

relation length ξ. It can be estimated from the central limit theorem as

∆Tc ∼ ξ
−d/2 . (1.56)

According to Eq. 1.13, the correlation length ξ depends on the distance from the

critical temperature as

ξ ∼ |T − Tc |
−ν . (1.57)

By combining Eqs. (1.56) and (1.57), we get

∆Tc ∼ |T − Tc |
dν/2 . (1.58)
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Thus, the clean critical point cannot be stable against randomness if the condition

dν > 2 , (1.59)

is violated. This is known as the Harris criterion for the stability of continuous phase

transitions in presence of quenched disorder.

1.4.4. Strong-Disorder Renormalization Group Theory and Infinite Random-

ness Critical Point. Traditional renormalization group (RG) methods to predict the critical

behavior of systems that undergo a phase transition often do not work for strongly disordered

systems. A very different type of RG was suggested by Ma, Dasgupta, and Hu [38, 39] who

studied random antiferromagnets. This lead to the development of the method now known

as the strong-disorder renormalization group (SDRG)[40].

The strategy of the SDRG is to decrease the number of degrees of freedom and

reduce the local energy scale by finding the strongest coupling in a system (the largest

local energy) and its the corresponding ground state of the Hamiltonian. The excited states

associated with the strong couplings are eliminated, and weaker effective couplings are

generated. This is repeated ad infinitum.

As a prototypical example, the strong-disorder renormalization group was applied

by Fisher [41, 42] to the random transverse-field Ising chain. The Hamiltonian of this model

is given by

H = −
∑

i

Jiσ
z
i σ

z
i+1 −

∑
i

hiσ
x
i , (1.60)

where σx
i and σz

i are Pauli matrices representing the spin operator at site i. The nearest-

neighbor interactions Ji and transverse fields hi are both independent random variables with

probability distributions P(Ji) and R(hi), respectively. This model has two phases that are

separated by a quantum phase transition when the typical values h and J of these variables
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agree, (〈lnJ〉 = 〈lnh〉) [43]. If h � J, the ground state is a polarized paramagnetic state in

the field direction (x-direction). In contrast, for h � J, the system is ferromagnetic in the

z-direction.

Based on the idea of the SDRG, we first look for the strongest coupling Ω in the

entire system as

Ω = max{Ji, hi} . (1.61)

This coupling could be either an interaction between nearest neighbor sites or a transverse

field at one site.

If Ω = hi, i.e., the strongest coupling is a transverse field, the spin σi is pinned in

the field direction. It does not make any contribution to the magnetization in the z-direction

and can be eliminated from the system. Nevertheless, the excited state of spin σi gives a

weak effective coupling J̃ between the nearest neighbor spins.

The effective coupling J̃ can be estimated in perturbation theory by considering the

unperturbed part of the Hamiltonian ( H = H0 + H1) as

H0 = −hiσ
x
i , (1.62)

while the rest of the local Hamiltonian

H1 = −Ji−1σ
z
i−1σ

z
i − Jiσ

z
i σ

z
i+1 , (1.63)

is treated in second-order perturbation theory, yielding an effective interaction

He f f = −J̃σz
i−1σ

z
i+1 with J̃ =

Ji−1Ji

hi
. (1.64)
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Fig. 1.10 illustrate the steps of the strong-disorder renormalization group when

Ω = hi.

In contrast, if the largest coupling is an interaction Ji between the spins at site i

and i + 1, then the transverse fields hi and hi+1 can be considered as a perturbation to the

unperturbed term (−Jiσ
z
i σ

z
i+1) in the local Hamiltonian. The two spins σi and σi+1 are

joined together into a spin cluster σ̃ with an effective transverse field h̃ and an effective

magnetic moment µ̃

µ̃ = µi + µi+1 , (1.65)

where µi and µi+1 are the moments associated with σi and σi+1. Analogously, we can find

the expression of h̃ by writing the local Hamiltonian as H = H0 + H1 where

H0 = −Jiσ
z
i σ

z
i+1 , (1.66)
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Fig. 1.10. Schematic of the strong-disorder renormalization group step for decimating a
field.
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and

H1 = −hiσ
x
i − hi+1σ

x
i+1 . (1.67)

By using second-order perturbation theory, we get the effective transverse field

He f f = −h̃σ̃x with h̃ =
hihi+1

Ji
. (1.68)

The procedure of this renormalization group step is explained schematically in Fig. 1.11.

The concept of the strong-disorder renormalization group is based on iteration.

By repeating the steps of the SDRG above, the strongest energy in the system gradually

decreases, Ω→ 0. The interactions Ji and the transverse fields hi are independent random

variables at each stage of the strong-disorder renormalization group, and their probability

distributions P(J;Ω) and R(h;Ω) evolve during the process of the SDRG. Fisher [42] studied

the critical behavior of the Hamiltonian (1.60) of the random transverse-field Ising model

and derived the SDRG flow equations of these distributions.
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Fig. 1.11. Schematic of the strong-disorder renormalization group step for decimating an
interaction.
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At the critical point (〈lnh〉 = 〈lnJ〉), Fisher found the solutions of the flow equations

by introducing a logarithmic variable Γ = ln(Ω0/Ω), whereΩ0 is the initial strongest energy

in the system. The probability distribution of the interactions takes the form

P(J;Ω) =
1
ΓJ

(
J
Ω

)1/Γ
, (1.69)

and the distribution of the transverse fields is

R(h;Ω) =
1
Γh

(
h
Ω

)1/Γ
. (1.70)

In the low-energy limit, the relative widths of the probability distribution Eqs. (1.69)

and (1.70) become larger and larger with decreasing Ω (Ω → 0). This implies that the

effects of randomness (disorder) get stronger and stronger without bound. Thus, the system

is dominated by a critical fixed point of the so-called infinite-randomness type. At such

critical points, the dynamic scaling of the system is logarithmic (activated) scaling rather

than power-law scaling (i.e., length scales like logarithm of time).

When the infinite-randomness critical point is approached, the behavior is charac-

terized by a set of independent critical exponents including the tunneling critical exponent

ψ = 1/2, which controls the relation between the typical length of a cluster L and Ω

L ∼
[
ln

(
Ω0
Ω

)]1/ψ
. (1.71)

Also, the exponent φ = (
√

5 + 1)/2 wich equals the golden ratio, is the critical exponent of

the magnetic moment µ of a cluster

µ ∼

[
ln

(
Ω0
Ω

)]φ
. (1.72)
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These two expressions introduce the unusual scaling behavior (activated scaling

instead of conventional scaling) of observables at this kind of critical point. Activated

scaling also appears in many quantum phase transitions in disordered metals, for example

in the superconducting nanowires studied in Paper IV.

1.4.5. Rare-Regions andGriffiths Effects. Disorder does not only affect the phase

transition itself but also the behavior close to the transition. For definiteness, assume that

disorder changes the transition point to Tc from its clean (bulk) value T0
c . Interesting effects

arise in the region between the clean critical point and the disordered transition point,

i.e., the range of temperatures Tc < T < T0
c , which is known as the Griffiths region or

Griffiths phase. It is caused by rare strong disordered fluctuations and the spatial regions

where they occur.

The effects of rare regions on a phase transition range from changing the properties of

a phase transition to completely destroying it. In 1969, Griffiths [44] proved the existence

of a singularity in the free energy of the system in the entire interval of temperatures

Tc < T < T0
c . This singularity can be attributed to rare regions. Thus, the effects of rare

regions on phase transitions are also called the Griffiths effects [45].

To explain the Griffiths effects, consider in Fig. 1.12, a diluted classical ferromag-

netic system. Dilution favors the paramagnetic state, and thus the critical temperature T0
c

reduces to Tc. There can be large spatial regions (rare-regions) in the range Tc < T < T0
c

which are devoid of any impurities (vacancies). Such regions have slow dynamics and make

large contributions to the thermodynamics. A Griffiths region also exists in the ordered

phase. There, the rare regions are clusters inside holes in the ferromagnetic order.

How large is the rare-region contributions to the thermodynamic behavior of a

system close to a phase transition? The probability P for finding a rare-region as function

of its size LRR is

P(LRR) ∼ exp(−ALd
RR) , (1.73)
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Fig. 1.12. Schematic of Griffiths-regions on both sides of Tc in the plot of magnetization m
as a function of temperature T .

where A is a constant. The influences of the rare regions on the system now depend on

how large a contribution each rare region can make. This is controlled by the effective

dimensions dRR of the rare region and its relation to the lower critical dimensionality d−c of

the system. Thus, three cases can be compared [20, 46, 47]:

i. If dRR < d−c , it is impossible that the rare region undergoes the phase transition

without contributions from the entire system. The contribution of the rare region

scales as a power of its size, which isn’t able to defeat the exponential decay in the

rare region probability (Eq. 1.73). Therefore, the effects of the Griffiths phase in this

case will be exponentially weak ( conventional critical point with power-law dynamic

scaling ).
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ii. If dRR = d−c , the rare region is exactly at the lower critical dimension. In this case,

the rare region still cannot undergo the phase transition by itself (independently), but

the contributions of the rare region to observables lead to strong exponential behavior

that overcomes the decreasing of the rare region probability. Thus, the Griffith effects

lead to infinite-randomness critical points with non-conventional dynamic scaling.

iii. The last case consists of rare regions above the lower critical dimension, dRR > d−c .

In this case, the rare region can undergo the phase transition independently from the

bulk system. This leads to the destruction of the sharp phase transition of the system

by smearing.

Case (i) implies that, in a classical system with short-range correlated disorder, the

Griffiths singularities in the free energy are only essential ones [48, 49, 50], resulting in

very weak thermodynamic Griffith effects. In contrast, the rare region effects become more

important and influential for long-range correlated disordered systems, see Paper I.
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ABSTRACT†

We investigate the nonequilibrium phase transition in the disordered contact process

in the presence of long-range spatial disorder correlations. These correlations greatly

increase the probability for finding rare regions that are locally in the active phase while

the bulk system is still in the inactive phase. Specifically, if the correlations decay as a

power of the distance, the rare region probability is a stretched exponential of the rare region

size rather than a simple exponential as is the case for uncorrelated disorder. As a result,

the Griffiths singularities are enhanced and take a non-power-law form. The critical point

itself is of infinite-randomness type but with critical exponent values that differ from the

uncorrelated case. We report large-scale Monte-Carlo simulations that verify and illustrate

our theory. We also discuss generalizations to higher dimensions and applications to

other systems such as the random transverse-field Ising model, itinerant magnets and the

superconductor-metal transition.
†Published in Physical Review E 90, 042132 (2014).
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1. INTRODUCTION

The effects of quenched spatial disorder on phase transitions have been a topic of

great interest for several decades. Initially, research concentrated on classical (thermal)

transitions for which many results can be obtained by using perturbative methods adapted

from the theory of phase transitions in clean systems (see, e.g., Ref. [1]).

Later, it became clear, however, that many transitions are dominated by the non-

perturbative effects of strong, rare disorder fluctuations and the rare spatial regions that

support them. Such rare regions can be locally in one phase while the bulk system is

in the other. The resulting slow dynamics leads to thermodynamic singularities, now

known as the Griffiths singularities [2, 3], not just at the transition point but in an entire

parameter region around it. Griffiths singularities at generic classical (thermal) phase

transitions are very weak and probably unobservable in experiment [4]. In contrast, at many

quantum and nonequilibrium phase transitions, the rare regions lead to strong Griffiths

effects characterized by non-universal power-law singularities of various observables. The

critical point itself is of exotic infinite-randomness type and characterized by activated rather

than power-law dynamical scaling. This was first demonstrated in the random-transverse

field Ising chain using a strong-disorder renormalization group [5, 6] as well as heuristic

optimal fluctuation arguments and computer simulations [7, 8, 9]. Similar power-law

Griffiths singularities were also found at the nonequilibrium transition of the disordered

contact process [10, 11, 12] and at many other quantum and nonequilibrium transitions. In

some systems, the rare region effects are even stronger and destroy the sharp phase transition

by smearing [13]. Recent reviews and a classification of rare region effects can be found,

e.g., in Refs. [14].

The majority of the literature on rare regions and Griffiths singularities focuses on

uncorrelated disorder. In many physical situations, we can expect, however, that the disor-

der is correlated in space, for example if it caused by charged impurities. It is intuitively

clear that sufficiently long-ranged spatial disorder correlations must enhance the rare region
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effects because they greatly increase the probability for finding large atypical rare regions.

Rieger and Igloi [15] studied a random transverse-field Ising chain with power-law disorder

correlations. They indeed found that sufficiently long-ranged correlations change the uni-

versality class of the transition. They also predicted that the Griffiths singularities take the

same power-law form as in the case of uncorrelated disorder, but with changed exponents.

In this paper, we investigate the nonequilibrium phase transition in the disordered

one-dimensional contact process with power-law disorder correlations by means of optimal

fluctuation theory and computer simulations. Our paper is organized as follows. We define

the contact process with correlated disorder in Sec. 2. In Sec. 3, we develop our theory

of the nonequilibrium phase transition and the accompanying Griffiths phase. Specifically,

we show that the probability of finding a large rare region is a stretched exponential of its

size rather than a simple exponential as for uncorrelated disorder. As a result, the Griffiths

singularities are enhanced and take a non-power-law form. The critical point itself is of

infinite-randomness type but its exponents differ from the uncorrelated case. Sec. 4 is

devoted to Monte-Carlo simulations that verify and illustrate our theory. In Sec. 5, we

generalize our results to higher dimensions and other physical systems. We also discuss the

relation between the present work and Ref. [15]. We conclude in Sec. 6.

2. CONTACT PROCESS WITH CORRELATED DISORDER

The contact process [16] is a prototypical nonequilibrium many-particle system

which can be understood as a model for the spreading of an epidemic. Consider a one-

dimensional regular lattice of L sites. Each site can be in one of two states, either inactive

(healthy) or active (infected). The time evolution of the contact process is given by a

continuous-time Markov process during which active lattice sites infect their nearest neigh-

bors or heal spontaneously. Specifically, an active site becomes inactive at rate µ, while

an inactive site becomes active at rate nλ/2 where n is the number of its active nearest
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neighbors. The healing rate µ and the infection rate λ are the external control parameters

of the contact process. Without loss of generality, µ can be set to unity, thereby fixing the

unit of time.

The qualitative behavior of the contact process is easily understood. If healing

dominates over infection, µ � λ, the epidemic eventually dies out completely, i.e., all

lattices sites become inactive. At this point, the system is in a fluctuationless state that it can

never leave. This absorbing state constitutes the inactive phase of the contact process. In the

opposite limit, µ � λ, the infection never dies out (in the thermodynamic limit L → ∞).

The system eventually reaches a steady state in which a nonzero fraction of lattices sites is

active. This fluctuating steady state constitutes the active phase of the contact process. The

active and inactive phases are separated by a nonequilibrium phase transition in the directed

percolation universality class [17, 18, 19]. The order parameter of this absorbing-state

transition is given by the steady state density ρstat = limt→∞ ρ(t) which is the long-time

limit of the density of infected sites at time t,

ρ(t) =
1
L

∑
i

〈ni(t)〉 . (1)

Here, ni(t) is the occupation of site i at time t, i.e., ni(t) = 1 if the site is infected and

ni(t) = 0 if it is healthy. 〈. . .〉 denotes the average over all realizations of the Markov

process.

So far, we have discussed the clean contact process for which λ and µ are spatially

uniform. Quenched spatial disorder is introduced by making the infection rate λi of site

i and/or its healing rate µi random variables. The correlations of the randomness can be

characterized by the correlation function

Gλ(i, j) = [λiλ j]dis − [λi]dis [λ j]dis (2)
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where [. . .]dis denotes the disorder average. The correlation function Gµ of the healing rates

µi can be defined analogously. The existing literature on the disordered contact process

mostly considered the case of uncorrelated disorder, Gλ(i, j) ∼ Gµ(i, j) ∼ δi j . In the present

paper, we are interested in long-range correlations whose correlation function decays as a

power of the distance ri j between the two sites,

Gλ(i, j) ∼ Gµ(i, j) ∼ r−γi j , (3)

for large ri j . For our analytical calculations we will often use a correlated Gaussian

distribution

PG(λ1, . . . , λL) ∼ exp

[
−

1
2

∑
i, j

(λi − λ̄)Ai j(λ j − λ̄)

]
(4)

of average λ̄ = [λi]dis and covariance matrix (A−1)i j = Gλ(i, j) [20]. Alternatively, we will

also use a correlated binary distribution in which λi can take values λ and cλ with overall

probabilities (1 − p) and p, respectively. Here, p and c are constants between 0 and 1.

3. THEORY

3.1. RARE-REGIONPROBABILITY. TheGriffiths phase in the disordered con-

tact process is caused by rare large spatial regions whose effective infection rate is larger

than the bulk average λ̄. For weak disorder and outside the asymptotic critical region, the

effective infection rate can be approximated by

λRR ≈
1

LRR

∑
i∈RR

λi (5)

To estimate how the probability distribution of λRR depends on the rare region size LRR, we

start from the correlated Gaussian (4), introduce λRR as a new variable and then integrate

out all other random variables. For large LRR and up to subleading boundary terms, this
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leads to the distribution

P(λRR, LRR) ∼ exp
[
−

LRR

2G̃(LRR)
(λRR − λ̄)

2
]

(6)

where G̃(LRR) is the sum over the correlation function

G̃(LRR) ∼

LRR/2∑
j=0

Gλ(0, j) . (7)

Two cases need to be distinguished, depending on the value of the decay exponent γ in the

correlation function (3). If γ > 1, the sum G̃(LRR) converges in the limit LRR → ∞. The

probability distribution of the effective infection rate λRR thus takes the asymptotic form

P(λRR, LRR) ∼ exp
[
−

1
2b2 LRR (λRR − λ̄)

2
]

(8)

where b is a constant. This form is identical to the result for uncorrelated or short-range

correlated disorder (and agrees with the prediction of the central limit theorem). For

0 < γ < 1, in contrast, the sum G̃(LRR) behaves as L1−γ
RR for large LRR. Consequently, the

probability distribution of λRR reads

P(λRR, LRR) ∼ exp
[
−

1
2b2 LγRR (λRR − λ̄)

2
]
. (9)

This is a stretched exponential decay in LRR rather than the simple exponential obtained in

(8). In other words, for 0 < γ < 1, the probability for finding a large deviation of λRR from

the average λ̄ decays much more slowly with rare region size than in the uncorrelated case.

We have also considered a correlated binary disorder distribution instead of the

Gaussian (4). In this case, rare regions can be defined as regions of LRR consecutive sites

having the larger of the two infection rates. For uncorrelated disorder, the probability for

finding such a region decays as a simple exponential of its size LRR. We have confirmed



41

numerically that the corresponding probability for the power-law correlations (3) with

0 < γ < 1 follows a stretched exponential

w(LRR) ∼ exp(−cLγRR) (10)

with the same exponent γ as in Eq. (9).

3.2. GRIFFITHS PHASE. We now use the results of Sec. 3.1 to analyze the time

evolution of the density of active sites ρ(t) in the Griffiths phase on the inactive side of

the nonequilibrium transition. This calculation is a generalization to the case of correlated

disorder of the approach of Refs. [21, 22].

The rare region contribution to ρ(t) can be obtained by summing over all regions

that are locally in the active phase, ie., all regions having λRR > λc. For the correlated

Gaussian distribution (4), ρ(t) reads

ρ(t) ∼
∫ ∞

λc

dλRR

∫ ∞

0
dLRR P(λRR, LRR) ×

×LRR exp[−t/τ(λRR, LRR)] (11)

Here, P(λRR, LRR) is the rare region distribution (8) or (9), depending on the value of γ;

and τ(λRR, LRR) denotes the lifetime of the rare region. It can be estimated as follows. As

the rare region is locally in the active phase, λRR > λc, it can only decay via an atypical

coherent fluctuation of all its sites. The probability for this to happen is exponentially small

in the rare region size [10], resulting in an exponentially large life time

τ(λRR, LRR) = t0 exp [aLRR] (12)

where t0 is a microscopic time scale. The coefficient a vanishes at λRR = λc and increases

with increasing λRR, i.e., the deeper the region is in the active phase, the larger a becomes.

Because a has the dimension of an inverse length, it scales as ξ−1
⊥ (where ξ⊥ is the correlation
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length) according to finite-size scaling [23],

a = a′(λRR − λc)
ν0⊥ . (13)

Note that ν0⊥ is the clean correlation length exponent unless the rare region is very close to

criticality (inside the narrow asymptotic critical region) [24].

In the long-time limit t � t0, the integral (11) can be solved in saddle-point

approximation. The saddle point equations read

∂

∂LRR

[
LγRR

2b2 (λRR − λ̄)
2 +

t
t0

e−a′(λRR−λc)
ν0⊥LRR

]
= 0 , (14)

∂

∂λRR

[
LγRR

2b2 (λRR − λ̄)
2 +

t
t0

e−a′(λRR−λc)
ν0⊥LRR

]
= 0 , (15)

and yield the saddle point values

λsp − λc =
γν0⊥

2 − γν0⊥
(λc − λ̄) , (16)

Lsp ∼ (λc − λ̄)
−ν0⊥ ln(t/t0) . (17)

Eqs. (14) to (17) apply to the long-range correlated case γ < 1; the corresponding relations

for the short-range correlated case follow by formally setting γ = 1.

For the method to be valid, λsp must be within the integration range of the integral

(11). The bulk system is in the inactive phase implying λ̄ < λc. Moreover, the clean

correlation length exponent of the one-dimensional contact process takes the value ν0⊥ ≈

1.097 [25]. Consequently, the saddle-point value λsp is larger than λc, as required. Inserting

the saddle-point values into the integrand yields

ρ(t) ∼ exp
[
−

1
z′

(
ln

t
t0

)γ]
(18)
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where

z′ ∼ (λc − λ̄)
γν0⊥−2 (19)

plays the role of a dynamical exponent in the Griffiths phase. In the short-range correlated

case, γ is formally 1. Thus, Eq. (18) reproduces the well-known power-law Griffiths

singularity of density in this case [10, 11, 12]. In contrast, in the long-range correlated case,

γ < 1, the decay of the density is slower than any power. Long-range disorder correlations

thus lead to a qualitatively enhanced Griffiths singularity.

The above derivation started from the correlatedGaussian distribution (4). However,

an analogous calculation can be performed for a correlated binary distribution by combining

the rare region probability (10) with the rare region life time (12). Solving the resulting

integral over LRR in saddle-point approximation leads to the same functional form (18) of

the Griffiths singularity, with

z′ = aγ/c . (20)

If the rare regions are not in the active phase but right a the critical point, their decay

time depends on their size via the power law τ(λc, LRR) ∼ Lz0
RR rather than the exponential

(12). Here, z0 ≈ 1.581 is the clean dynamical exponent. For a correlated binary disorder

distribution, this can be achieved by tuning the stronger of the two infection rates to the

clean critical value. Repeating the saddle-point integration for this case gives a stretched

exponential density decay

ln ρ(t) ∼ −tγ/(γ+z0) . (21)

As before, the short-range correlated case is recovered by formally setting γ = 1.

Griffiths singularities in other quantities can be derived in an analogous manner.

Consider, for example, systems that start from a single active site in an otherwise inactive

lattice. In this situation, the central quantity is the survival probability Ps(t) that measures

how likely the system is to be still active (i.e., to contain at least one active site) at time
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t. For directed percolation problems such as the contact process, the survival probability

behaves in the same way as the density of active sites [17]. Thus, the time-dependencies

(18) and (21) derived for ρ(t) also hold for Ps(t).

We emphasize that the dependencies of the Griffiths dynamical exponent z′ on the

distance from criticality given in (19) and (20) hold outside the asymptotic critical region

of the disordered contact process. The analysis of the critical region itself requires more

sophisticated methods that will be discussed in the next section.

3.3. CRITICAL POINT. After discussing the Griffiths phase, we now turn to the

critical point of the disordered contact process itself. The contact process with spatially

uncorrelated disorder features an exotic infinite-randomness critical point in the universality

class of the (uncorrelated) random transverse-field Ising chain [11, 12]. Is this critical point

stable or unstable against the long-range power-law disorder correlations (3)? According

to Weinrib and Halperin’s generalization [26] of the Harris criterion, power-law disorder

correlations are irrelevant if the decay exponent γ fulfills the inequality

γ > 2/νunc
⊥ (22)

where νunc
⊥ is the correlation length exponent for uncorrelated disorder. If this inequality is

violated, the correlations are relevant, and the critical behaviormust change. The correlation

length exponent of the contact process with uncorrelated disorder takes the value νunc
⊥ = 2

[5, 11]. The long-range correlations are thus irrelevant if γ > 1 and relevant if γ < 1.

Interestingly, this is the same criterion as we derived for the Griffiths phase in Secs. 3.1 and

3.2.

What is the fate of the transition in the long-range correlated case γ < 1? As long-

range correlations tend to further enhance the disorder effects, we expect the critical behavior

to be of infinite-randomness type, but with modified critical exponents that produce stronger

singularities. In the strong-disorder regime close to criticality, the behavior of the contact
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process is identical to that of a random transverse-field Ising chain as both are governed

by the same strong-disorder renormalization group recursion relations [5, 11]. Note that

the application of these recursion is justified even in the presence of disorder correlations

provided that the distributions of the logarithms of µ and λ become infinitely broad. The

transverse-field Ising chain with long-range correlated disorder was solved by Rieger and

Igloi [15] who mapped the problem onto fractional Brownian motion. They found an exact

result for the tunneling exponent ψ which relates correlation length ξ⊥ and correlation time

ξt via ln(ξt/t0) ∼ ξ
ψ
⊥ . For γ > 1, it takes the uncorrelated value ψ = 1/2 while it is given by

ψ = 1−γ/2 for γ < 1. The correlation length exponent ν⊥ takes the value 2 for γ > 1 as for

uncorrelated disorder. For γ < 1, it reads ν⊥ = 2/γ in agreement with general arguments by

Weinrib and Halperin [26]. A third exponent is necessary to define a complete set; Rieger

and Igloi numerically calculated the scale dimension β/ν⊥ of the order parameter and found

it to decay continuously from its uncorrelated value (3 −
√

5)/4 (taken for all γ > 1) to 0

(for γ = 0).

A qualitative understanding of these results in the context of the contact process

can be obtained from simple arguments based on the strong-disorder recursion relations

[11] even though a closed form solution of the renormalization group does not exist for

the case of long-range correlated disorder [27]. Imagine performing a (large) number of

strong-disorder renormalization group steps, iteratively removing the largest decay rates

µi and infection rates λi. The resulting chain will consist of surviving sites (representing

clusters of original sites) whose effective decay rate can be estimated as

µeff = Cµ
µ1 . . . µL

λ1 . . . λL−1
(23)

and long bonds with effective infection rates

λeff = Cλ
λ1 . . . λL

µ1 . . . µL−1
(24)
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where L is the size of the cluster or bond. In the strong-disorder limit, the prefactors Cµ

and Cλ provide subleading corrections only. ln µeff and ln λeff can thus be understood as the

displacements of correlated random walks

ln µeff ∼
L−1∑
i=1

ln(µi/λi) , ln λeff ∼
L−1∑
i=1

ln(λi/µi) . (25)

Right at criticality, these randomwalks have to be (asymptotically) unbiased because healing

and infection remain competing in the limit L → ∞. The typical values ln µtyp and ln λtyp

of the cluster healing and infection rates can be estimated from the variance of the random

walk displacements giving

| ln µtyp | ∼ | ln λtyp | ∼

√
L G̃(L) ∼


L1/2 (γ > 1)

L1−γ/2 (γ < 1)
(26)

for large L. Here, G̃(L) is the sum over the disorder correlation function defined in Eq. (7).

This estimate thus reproduces the values of ψ quoted above [28].

Moving away from criticality introduces a bias into the randomwalks. The crossover

from critical to off-critical behavior occurs when the displacement due to the bias becomes

larger than the displacement (26) due to the randomness. The bias term scales as |λ − λc |L.

We thus obtain a crossover length

Lx ∼


|λ − λc |

−2 (γ > 1)

|λ − λc |
−2/γ (γ < 1)

(27)

in agreement with the quoted values of ν⊥.
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4. MONTE-CARLO SIMULATIONS

4.1. OVERVIEW. We now turn to large-scale Monte-Carlo simulations of the

one-dimensional contact process with power-law correlated disorder. We use the same

numerical implementation of the contact process as in earlier studies with uncorrelated

disorder in one, two, three, and five dimensions in Refs. [12, 22, 29, 30]. It is based on an

algorithm suggested by Dickman [31]: The simulation starts at time t = 0 from an initial

configuration of active and inactive sites and consists of a sequence of events. During

each event an active site i is chosen at random from a list of all Na active sites. Then a

process is selected, either infection of a neighbor with probability λi/(1 + λi) or healing

with probability 1/(1 + λi). For infection, either the left or the right neighbor are chosen

with probability 1/2. The infection succeeds if this neighbor is inactive. The time is then

incremented by 1/Na.

Using this algorithm, we have simulated long chains for times up to t = 107. All

production runs use L = 220 ≈ 106 sites with periodic boundary conditions, and the results

are averages over large numbers of disorder configurations; precise data will be given below.

The random infection rates λi are drawn from a correlated binary distribution in

which λi can take values λ and cλ with overall probabilities (1 − p) and p, respectively.

Here, p and c are constants between 0 and 1. To generate these correlated random variables,

we employ the Fourier-filtering method [32]. It starts from uncorrelated Gaussian random

numbers ui and turns them into correlated Gaussian random numbers vi characterized by

the (translationally invariant) correlation function Gλ(i, j). This is achieved by transforming

the Fourier components ũq of the uncorrelated random numbers according to

ṽq =
[
G̃(L, q)

]1/2 ũq, (28)
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where G̃(L, q) is the Fourier transform of Gλ(i, j). We parameterize our long-range corre-

lations by the function

Gλ(i, j) =
[
1 + (i − j)2

]−γ/2 (29)

with periodic boundary conditions using the minimum image convention. Simulations are

performed for γ = 1.5, 0.8, 0.6 and 0.4. To arrive at binary random variables, the correlated

Gaussian random numbers vi then undergo binary projection: the infection rate λi takes the

value λ (“strong site”) if vi is greater than a composition-dependent threshold and the value

cλ with 0 < c < 1 (“weak site”) if vi is less than the threshold. We chose a concentration

p = 0.8 of weak sites and a strength c = 0.2 in all simulations. While the binary projection

changes the details of the disorder correlations, the functional form of the long-distance tail

remains unchanged.

Most of our simulations are spreading runs that start from a single active site in an

otherwise inactive lattice; we monitor the survival probability Ps(t), the number of sites

Ns(t) of the active cluster, and its (mean-square) radius R(t). Within the activated scaling

scenario [11, 12] associated with an infinite-randomness critical point, these quantities are

expected to display logarithmic time dependencies,

Ps ∼ [ln(t/t0)]−δ̄ , (30)

Ns ∼ [ln(t/t0)]Θ̄ , (31)

R ∼ [ln(t/t0)]1/ψ . (32)

The exponents δ̄ and Θ̄ can be expressed in terms of the scale dimension β/ν⊥ of the order

parameter and the tunneling exponent ψ as δ̄ = β/(ν⊥ψ) and Θ̄ = 1/ψ − 2δ̄ [12].

4.2. RESULTS: CRITICAL BEHAVIOR. We start be considering the case γ =

1.5. According to the theory laid out in Sec. 3, the power-law disorder correlations are

irrelevant for γ > 1. We therefore expect the critical behavior for γ = 1.5 to be identical

to that of the random contact process with uncorrelated disorder which features an infinite-
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randomness critical point in the universality class of the (uncorrelated) random transverse-

field Ising chain [11, 12]. Its critical exponents are known exactly, their numerical values

read β = 0.38197, ν⊥ = 2, ψ = 0.5, δ̄ = 0.38197, and Θ̄ = 1.2360 [5, 6].

To test these predictions, we analyze the time evolution of Ps, Ns and R in Fig. 1.

Specifically, the figure presents plots of P−1/δ̄
s , N1/Θ̄

s and Rψ vs. ln(t) using the theoretically

predicted exponent values. In such plots, the critical time dependencies (30) to (32)

correspond to straight lines independent of the unknown value of the microscopic time

scale t0. The plots show that the data for infection rate λ = 11.44 follow the predicted

time dependencies (30) to (32) over more than four orders of magnitude in time. We thus

identify λc = 11.44(6) as the critical infection rate (the number in brackets is an estimate of

the error of the last digit); and we conclude that the critical behavior for γ = 1.5 is indeed

identical to that of the contact process with uncorrelated disorder.

We now turn to γ < 1, for which the long-range correlations are expected to change

the critical behavior. A complete set of exponents is not known analytically in this case;

the data analysis is therefore more complicated than for γ > 1. As we do have an analytical

value for the tunneling exponent, ψ = 1− γ/2, we can graph Rψ vs. ln(t), to find the critical

point. Fig. 2 shows the corresponding plot for γ = 0.4. The data at λ = 11.6 follow the

predicted time dependence (32) for more than three orders of magnitude in time. We thus

identify λc = 11.6(2) as the critical infection rate. Analogous plots for γ = 0.8 and 0.6 give

infection rates of λc = 11.3(2) and λc = 11.4(2), respectively.

Alternatively, we can employ a version of the method used in Refs. [29, 30] that

allows us to eliminate the unknown microscopic time scale t0 from the analysis. It is based

on the observation that t0 takes the same value in all of the quantities (because it is related

to the basic energy scale of the underlying renormalization group). Thus, if we plot Ns(t)

versus Ps(t), the critical point corresponds to power-law behavior, and t0 drops out. The

same is true for other combinations of observables. Specifically, by combining Eqs. (30),

(31) and (32), we see that Ns/P2
s ∝ R at criticality. Thus, identifying straight lines in
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Fig. 1. Time evolution of the number of active sites Ns, the survival probability Ps, and
the radius of the active cloud R for the disordered contact process with power-law disorder
correlations characterized by a decay exponent γ = 1.5. The data are averages over up to
40000 samples with 100 individual runs per sample. The critical exponents are fixed at
their uncorrelated values ψ = 0.5, δ̄ = 0.38197, and Θ̄ = 1.2360.

plots of Ns/P2
s versus R allows us to find the critical point without needing a value for t0.

Fig. 3 shows such a plot for γ = 0.8; and we have created analogous plots of γ = 0.6 and

0.4. They give the same critical infection rates, λc = 11.3(2) (for γ = 0.8), λc = 11.4(2)

(for γ = 0.6), and λc = 11.6(2) (for γ = 0.4) as the plots of Rψ vs. ln(t). Interestingly,

within their numerical errors, λc does not depend on the decay exponent γ of the disorder

correlations.
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Fig. 2. Time evolution of the radius of the active cloud R for γ = 0.4. The data are averages
over about 30000 samples with 100 individual runs per sample. The tunneling exponent is
set to its analytical value ψ = 1 − γ/2 = 0.8.
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Fig. 3. Ns/P2
s vs. R for a correlation decay exponent γ = 0.8. The data are averages over

about 20000 samples with 100 individual runs per sample. The maximum time is 106 for
all curves except the critical one, λ = 11.3, for which it is 107.

Once the critical point is identified, we can verify and/or find critical exponents by

analyzing the time evolutions of Ps, Ns and R. Fig. 4 displays P−1/δ̄
s , N1/Θ̄

s and Rψ versus

ln(t) at criticality for γ = 0.8. The tunneling exponent ψ is set to its theoretical value

1 − γ/2 while δ̄ and Θ̄ are determined from the data by requiring that the corresponding

curves become straight lines for large times. The data follow the predicted logarithmic time

dependencies (30), (31) and (32) over about four orders of magnitude in time. This not only
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Fig. 4. N1/Θ̄
s , P−1/δ̄

s , and Rψ versus ln(t) at criticality for a correlation decay exponent
γ = 0.8. Here, ψ = 0.6 is set to its theoretical value while δ̄ = 0.269 and Θ̄ = 0.982 are
determined from the data by requiring that the corresponding curves become straight lines
for large times.

confirms the theoretical value of ψ, it also allows us to extract estimates the scale dimension

β/ν⊥ of the order parameter from both δ̄ and Θ̄. We have performed the same analysis also

for γ = 0.6 and γ = 0.4.

The resulting exponent values are summarized in Table 1. The uncertainty of δ̄ and

Θ̄ can be roughly estimated from the hyperscaling relation Θ̄ + 2δ̄ = 1/ψ. The exponents

for γ = 0.6 and γ = 0.4 fulfill this relation in good approximation (less than 4% difference

between the left and the right sides). For γ = 0.8, the agreement is not quite as good. As

γ = 0.8 is close to the marginal value of 1, this may be caused by a slow crossover from the

short-range correlated fixed point to the long-range correlated one.

The values of the scale dimension of the order parameter, β/ν⊥, are in reasonable

agreement with those calculated by Rieger and Igloi from the average persistence of a Sinai

random walker (see inset of Fig. 1 of Ref. [15]).

To obtain a complete set of exponents, we also analyze off-critical data. Fig. 5 shows

a double-logarithmic plot of Ps vs. R for decay exponent γ = 0.8.
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Table 1. Critical exponents of the one-dimensional contact process with power-law corre-
lated disorder. The exponents ν⊥ and ψ (above the horizontal line) are known analytically,
as are all exponents in the short-range case γ > 1. The exponents δ̄ and Θ̄ for γ < 1 stem
from fits of our data. The scale dimension β/ν⊥ of the order parameter can be extracted
from both δ̄ and Θ̄, the data in the table are averages of the two values.

exponent γ > 1 γ = 0.8 γ = 0.6 γ = 0.4
ν⊥ 2 2.5 3.33 5
ψ 0.5 0.6 0.7 0.8
δ̄ 0.3820 0.27 0.20 0.13
Θ̄ 1.2360 0.98 0.98 1.01
β/ν⊥ 0.1910 0.18 0.14 0.10

The plot allows us to determine the crossover radius Rx at which the survival

probability of slightly off-critical curves has dropped to half of its critical value. According

to scaling, the crossover radius must depend on the distance from criticality via Rx ∼

|λ − λc |
−ν⊥ . The inset of Fig. 5 shows that our data indeed follow this power law with the

predicted exponent ν⊥ = 2/γ = 2.5.
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Fig. 5. Double-log plot of Ps vs. R for decay exponent γ = 0.8 and several infection rates λ
at and below the critical rate λc = 11.3. The dash-dotted line shows Ps/2 for λ = λc. The
crossing points of the dash-dotted line with the off-critical data determines the crossover
radius Rx . Inset: Rx vs. |λ − λc |. The solid line is a power-law fit to Rx ∼ |λ − λc |

−ν⊥ with
an exponent ν⊥ = 2.5.
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4.3. RESULTS: GRIFFITHS PHASE. We now turn to the Griffiths phase λc0 ≤

λ < λc where λc0 ≈ 3.298 is the critical infection rate of the clean contact process containing

only “strong” sites (p = 0).

Right at the clean critical point, λ = λc0, the time evolution of the survival prob-

ability is predicted to follow the stretched exponential (21) in the long-time limit. Our

corresponding data for γ = 0.8, 0.6, and 0.4 are plotted in Fig. 6. For all γ, the data indeed

follow stretched exponentials over more than six orders of magnitude in Ps. The exponent

y decreases with decreasing γ, as predicted in (21). The actual numerical values of y are

somewhat larger than the prediction y = γ/(γ + z0). We attribute this to the fact that, due to

the rapid decay of Ps, the data are taken at rather short times (t / 103). Thus, they probably

have not reached the true asymptotic regime, yet.

We now move into the bulk of the Griffiths phase, λc0 < λ < λc. Here, we wish to

contrast the conventional power-law Griffiths singularity with the unusual non-power-law

form (18). Fig. 7 shows the survival probability as a function of time for a decay exponent

γ = 1.5 and several infection rates inside the Griffiths phase. After initial transients, all

5 10 15 20
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10-4

10-1

P
s

tyEx

top to bottom
         ,  yEx    ,  yTh 

 0.8  , 0.37  , 0.336
 0.6  , 0.32  , 0.275
 0.4  , 0.27  , 0.201

Fig. 6. Time evolution of the survival probability Ps at the clean critical infection rate
λc0 = 3.298 for decay exponents γ = 0.8, 0.6, and 0.4. The data are averages over 2 × 104

to 105 samples with at least 104 individual runs per sample. The experimental values yE x
are determined by requiring that the respective curves become straight lines for large times,
implying a stretched exponential time dependence, ln Ps ∼ ty. The theoretical values follow
from Eq. (21) which gives yT h = γ/(γ + z0).
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Fig. 7. Double-log plot of the survival probability Ps vs. time t for decay exponent γ = 1.5
at several infection rates inside the Griffiths phase, λc0 < λ < λc. The data are averages
over up to 40000 samples with 100 individual runs per sample.

data follow power laws (represented by straight lines) over serval orders of magnitude in

Ps and/or t. For γ = 1.5, we thus find the same type of power-law Griffiths singularity as

in the case of uncorrelated or short-range correlated disorder.In the long-range correlated

regime, γ < 1, we expect the survival probability to follow Eq. (18) rather than a power-law.

This prediction is tested in Fig. 8 which shows of Ps vs. t for decay exponent γ = 0.4.
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Fig. 8. Survival probability Ps vs. time t for decay exponent γ = 0.4 at several infection
rates inside the Griffiths phase, λc0 < λ < λc, plotted such that Eq. (18) yields straight
lines (the values of t0 are fit parameters). The data are averages over up to 20000 samples
with 100 individual runs per sample. Inset: Double-log plot of the same data to test for
power-law behavior.
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In the double-logarithmic plot in the inset, all data show pronounced upward curvatures

rather than the straight lines expected for power laws. In contrast, when plotted as ln Ps vs.

[ln(t/t0)]γ (where t0 is a fit parameter) in the main panel of the figure, all curves become

straight for sufficiently long times implying that the long-time behavior of Ps indeed follows

Eq. (18).

We have produced analogous plots for decay exponents γ = 0.6 and 0.8. As γ

decreases from 1 towards 0, the upward curvature in the double-logarithmic plots becomes

bigger, reflecting stronger and stronger deviations from power-law behavior, as expected.

In contrast, Eq. (18) describes the long-time behavior of all data very well, confirming our

theory.

5. GENERALIZATIONS

5.1. HIGHER DIMENSIONS. It this section, we generalize our results to the

contact process in higher dimensions d > 1. The theory of Sec. 3.1 can be easily adapted,

yielding the rare-region distribution

P(λRR, LRR) ∼


exp

[
−

1
2b2 Ld

RR (λRR − λ̄)
2
]
(γ > d)

exp
[
−

1
2b2 LγRR (λRR − λ̄)

2
]
(γ < d)

. (33)

This means that the functional form of the rare-region distribution is identical to the case of

uncorrelated disorder as long as γ > d. For γ < d, the probability for finding a rare-region

decays more slowly with its size. In terms of the volume Ld
RR, it is given by a stretched

exponential rather than a simple one.

Using this result, we now repeat the calculation of Sec. 3.2 for general d. For γ < d,

the resulting long-time behavior of the density of active sites in the Griffiths phase reads

ρ(t) ∼ exp

[
−

d
z′

(
ln

t
t0

)γ/d]
(34)
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with

z′ ∼ d(λc − λ̄)
γν0⊥−2 (35)

As in one dimension, the decay described by Eq. (34) is slower than any power. For γ > d,

in contrast, we find the usual power-law behavior. Eq. (34) also holds for a correlated binary

distribution with z′ = d aγ/d/c. The behavior right at the boundary of the Griffiths phase

(when the stronger of the two infection rates of the binary distribution is tuned to the clean

critical value) takes the form (21) for all dimensions.

The behavior of the critical point itself will again be of infinite-randomness type,

but for a sufficiently small correlation decay exponent γ < 2/νunc
⊥ , the critical exponents

will differ from those of the contact process with uncorrelated disorder (which were found

numerically in Ref. [29] for two dimensions and in Ref. [30] for three dimensions). The

correlation length exponent will take the value ν⊥ = 2/γ [26]; other exponents need to be

found numerically [15].

It is interesting to compare the relevance criteria of the long-range correlations in

the Griffiths phase and at the critical point. In one dimension, the long-range correlations

become relevant for γ < 1 both in the Griffiths phase and at criticality (because the correla-

tion length exponent of the one-dimensional contact process with uncorrelated disorder has

the value νunc
⊥ = 2, saturating the Harris criterion). In dimensions d > 1, the two criteria

differ. The uncorrelated correlation length exponent is larger than 2/d [29, 30]. Thus, the

long-range correlations do not become relevant for γ < d but only if γ < 2/νunc
⊥ < d.

In contrast, the long-range correlations become relevant for γ < d in the Griffiths phase.

Consequently, for d > 1, we expect a (narrow) range of decay exponents γ for which the

long-range correlations are relevant in the Griffiths phase but irrelevant at criticality. The

fate of the system in this subtle regime remains a task for the future.

5.2. OTHER SYSTEM. The theory of Secs. 3.1 and 3.2 and its generalization

to higher dimensions have produced enhanced non-power-law Griffiths singularities for

sufficiently long-ranged disorder correlations. Are these results restricted to the contact
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process or do they apply to other systems as well? In this section, we show that they hold

for a broad class of systems in which the charateristic energy or inverse time scale of a

rare region depends exponentially on its volume (class B of the rare region classification

of Refs. [14, 33]). In addition to the contact process, this class contains, e.g., the random

transverse-field Ising model, Hertz’ model of the itinerant antiferromagnetic quantum phase

transition, and the pair-breaking superconductor-metal quantum phase transition.

To demonstrate the enhanced Griffiths singularities, we generalize the calculation

of the rare region density of states developed in Ref. [21] to the case of our power-law

correlated disorder. Consider a disordered system with rare regions whose characteristic

energy ε depends on their volume via

ε(λRR, LRR) = ε0 exp[−aLd
RR] . (36)

Here, ε0 is a microscopic energy scale, and a = a′(λRR − λc)
dν0⊥ with λ representing the

parameter that tunes the system through the phase transition. In the contact process, ε = 1/τ

is the inverse life time of a rare region; in the transverse-field Ising model, it represents its

energy gap. We can derive a rare-region density of states by summing over all values of

λRR and LRR,

ρ̃(ε) ∼

∫ ∞

λc

∫ ∞

0
dLRR P(λRR, LRR) δ[ε − ε(λRR, LRR)] (37)

with the Gaussian rare-region probability P(λRR, LRR) from Eq. (33). After carrying out

the integral over LRR with the help of the δ function, the remaining λRR-integral can be

performed in saddle-point approximation in the limit ε → 0. For γ < d, the resulting

density of states takes the form

ρ̃(ε) ∼
1
ε

exp
[
−

d
z′

(
ln
ε0
ε

)γ/d]
(38)
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with z′ given by Eq. (35). For γ > d, in contrast, we recover the usual power-law behavior

ρ̃(ε) ∼ εd/z′−1. If we start from correlated binary disorder rather than a Gaussian distri-

bution, we arrive at the same expression (38) for the density of states with z′ = daγ/d/c.

Eq. (38) shows that the Griffiths singularities are qualitatively enhanced for γ < d as the

density of states diverges as 1/ε times a function that is slower than any power law.

Griffiths singularities in other observables can be calculated from appropriate inte-

grals of ρ̃(ε). For example, our results for the density of active sites in the contact process

can be reproduced by ρ(t) ∼
∫

dε ρ̃(ε) exp(−ε t). In the case of the random transverse-field

Ising model, we can calculate (see, e.g., Ref. [14]) the temperature dependence of observ-

ables such as the entropy S(T) ∼
∫ T

0 dε ρ̃(ε), the specific heat C(T) = T(∂S/∂T), and the

susceptibility χ(T) ∼ (1/T)
∫ T

0 dε ρ̃(ε). For γ < d, we find

S(T) ∼ C(T) ∼ T χ(T) ∼ exp
[
−

d
z′

(
ln
ε0
T

)γ/d]
. (39)

Analogously, the magnetization in a longitudinal field H scales as

M(H) ∼ exp
[
−

d
z′

(
ln
ε0
H

)γ/d]
. (40)

Let us compare these results with those obtained in Ref. [15]. Eq. (38), (39), and (40) yield

Griffiths singularities that are qualitatively stronger than power laws. In contrast, Rieger and

Igloi obtained the usual power-law Griffiths singularities, albeit with changed exponents.

We believe that this discrepancy arises from the fact that Rieger and Igloi assumed that the

probability for finding a strongly coupled cluster of size LRR in d dimensions takes the same

functional form, exp(−cLd
RR), as for uncorrelated disorder. Our calculations show that this

assumption is justified for γ > d. For γ < d, however, the rare region probability decays as

exp(−cLγRR), i.e., more slowly than in the uncorrelated case.
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6. CONCLUSIONS

To summarize, we have studied the effects of long-range spatial disorder correlations

on the critical behavior and the Griffiths singularities in the disordered one-dimensional

contact process. As long as the correlations decay faster as 1/ri j with the distance ri j

between the sites, the correlations are irrelevant both at criticality and in the Griffiths phase.

This means that both the critical and the Griffiths singularities are identical to those of the

contact process with uncorrelated disorder. If the correlations decay more slowly than 1/ri j ,

the universality class of the critical point changes, and the Griffiths singularities take an

enhanced, non-power-law form.

What is the reason for the enhanced singularities? As positive spatial correlations

imply that neighboring sites have similar infection rates, it is intuitively clear that sufficiently

long-ranged correlations must increase the probability for finding large atypical regions.

This is borne out in our calculations in Sec. 3.1: If the disorder correlations decay more

slowly than 1/ri j , the probability for finding a rare region behaves as a stretched exponen-

tial of its size (rather than the simple exponential found for uncorrelated and short-range

correlated disorder). Note that similar stretched exponentials have also been found in the

distributions of rare events in long-range correlated time series [34, 35].

Our theory of the Griffiths phase is easily generalized to higher dimensions. In

general dimension d, the rare-region probability decays exponentially with the rare-region

volume as long as the disorder correlations decay faster than 1/rd
i j . As a result, the Griffiths

singularities take the usual power-law form. For correlations decaying slower than 1/rd
i j , the

rare region probability becomes a stretched exponential of the volume, leading to enhanced,

non-power-law Griffiths singularities.

Moreover, as shown in Sec. 5.2, the theory is not restricted to the contact process.

It holds for all systems for which the characteristic energy (or inverse time) of a rare region

depends exponentially on its volume, i.e., for all systems in class B of the rare region

classification of Refs. [14, 33]. The random transverse-field Ising model is a prototypical
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example in the class. Our theory predicts that the character of its Griffiths singularities

changes from the usual power-law behavior for correlations decaying faster than 1/rd
i j to the

enhanced non-power-law forms (39) and (40) for correlations decaying slower than 1/rd
i j .

What about systems in the other classes, class A and class C, of the rare region

classification of Refs. [14, 33]? The rare regions in systems belonging to class A have char-

acteristic energies that decrease as a power of their sizes. Using this power-law dependence

rather than the exponential (36) in the calculation of Sec. 5.2 yields an exponentially small

density of states. We conclude that rare regions effects in class A remain very weak, even in

the presence of long-range disorder correlations. Rare regions in systems belonging to class

C can undergo the phase transition by themselves, independently from the bulk system.

This results in a smearing of the global phase transition. Svoboda et al. [36] considered

the effects of spatial disorder correlations on such smeared phase transitions. They found

that even short-range correlations can have dramatic effects and qualitatively change the

behavior of observable quantities compared to the uncorrelated case. This phenomenon

may have been observed in Sr1−xCaxRuO3 [37].
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ABSTRACT*

We investigate the two-dimensional four-color Ashkin-Teller model by means of

large-scale Monte-Carlo simulations. We demonstrate that the first-order phase transition

of the clean system is destroyed by random disorder introduced via site dilution. The critical

behavior of the emerging continuous transition belongs to the clean two-dimensional Ising

universality class, apart from logarithmic corrections. These results confirm perturbative

renormalization-group predictions; they also agree with recent findings for the three-color

case, indicating that the critical behavior is universal.

*Published in Fortschritte der Physik 65, 1600018 (2017).
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1. INTRODUCTION

At a first-order phase transition, two distinct thermodynamic phases have the same

free energy density and thus coexist macroscopically. Is such phase coexistence still possible

if the system contains random disorder that locally favors one phase over the other (so-called

random-Tc or random-mass disorder)? Building on earlier work for random fields [1], Imry

and Wortis [2] compared the possible free-energy gain from forming a domain that takes

advantage of the disorder with the free-energy cost of its domain wall. They found that

the formation of finite-size domains is favored in dimensions d ≤ 2, even for arbitrarily

weak disorder. (If the randomness breaks a continuous symmetry, the marginal dimension

is d = 4.) This destroys the macroscopic phase coexistence and with it the first-order phase

transition. After further work [3], this result was rigorously proven by Aizenman and Wehr

[4].

What happens to a system whose first-order phase transition is unstable against dis-

order? Is there an intermediate phase? Is the transition completely destroyed by smearing;

or does it become continuous? If the latter, in what universality class is the emerging critical

point?

The effects of disorder on first-order phase transitions have received less attention

than the corresponding effects on continuous transitions (see, e.g., Refs. [5, 6] for reviews).

As a result, the above questions are still being debated even for simple model systems such

as the two-dimensional Ashkin-Teller model. The classical N-color Ashkin-Teller model

[7, 8, 9, 10] is made up of N Ising models that are coupled via four-spin interactions. For

more than two colors (N > 2), the clean Ashkin-Teller model undergoes a first-order phase

transition from a magnetically ordered phase at low temperatures to a paramagnetic phase

at high temperatures.

In two dimensions, the first-order transition cannot survive in the presence of dis-

order; the two-dimensional N-color Ashkin-Teller model is thus a prototypical system

for studying the questions posed above. Perturbative renormalization group calculations
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[11, 12, 13] predict that disorder rounds the first-order transition of the clean-Ashkin-

Teller model to a continuous one which, somewhat surprisingly, is in the clean Ising

universality class with additional logarithmic corrections to scaling. Early numerical sim-

ulations [14, 15] of small systems reported nonuniversal critical behavior. However, a

recent high-accuracy study [16] of the disordered three-color Ashkin-Teller model provided

strong evidence in favor of the scenario predicted by the perturbative renormalization group

[11, 12, 13].

In the present paper, we test the universality of the emerging critical behavior in

the disordered Ashkin-Teller model by studying the four-color case and comparing it to

the existing simulations for three colors as well as the renormalization group findings.

Specifically, we report results of large-scale Monte Carlo simulations of the site-diluted

two-dimensional four-color Ashkin-Teller model with up to 22402 sites. The paper is

organized as follows. In Sec. 2, we introduce the model and summarize the predictions of

the perturbative renormalization group. Sec. 3 is devoted to the Monte-Carlo simulation

results. We summarize and conclude in Sec. 4.

2. DILUTED ASHKIN-TELLER MODEL

The two-dimensional N-color Ashkin-Teller model [8, 9, 10] is defined on a square

lattice of L2 sites. Each lattice site i contains N Ising spins Sαi = ±1, distinguished by the

“color”-index α = 1 . . . N . In the absence of disorder, the Hamiltonian reads

H = −J
N∑
α=1

∑
〈i j〉

Sαi Sαj − ε J
∑
α<β

∑
〈i j〉

Sαi Sαj Sβi Sβj . (1)

It can be understood as N identical Ising models that are coupled via their energy densities.

〈i j〉 denotes the sum over pairs of nearest neighbor sites on the lattice; J > 0 is a ferro-

magnetic interaction; and ε ≥ 0 parameterizes the strength of the inter-color coupling. The

clean two-color model (the original model proposed by Ashkin and Teller [7]) undergoes a
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continuous phase transition from amagnetically ordered (Baxter) phase at low temperatures

to a paramagnetic phase at high temperatures. In the Baxter phase, the spins of each color

order ferromagnetically w.r.t. each other but the relative orientation of the colors is arbitrary

(see, e.g., Ref. [17]). The critical behavior of the two-color model is nonuniversal, i.e., the

critical exponents change continuously with ε . We are interested in the case of three or

more colors for which the phase transition between the paramagnetic and Baxter phases is

of first order [8, 9, 10].

We introduce quenched disorder into the Hamiltonian (1) by means of site dilution.

This means, a fraction p of the lattice sites are randomly replaced by vacancies on which the

spins Sαi for all colors are removed. Site dilution is a microscopic realization of random-Tc

or random mass disorder, i.e., disorder that locally favors one phase over the other but does

not break any of the spin symmetries.

Murthy [11] and Cardy [12, 13] studied the phase transition of the N-color Ashkin-

Teller model with random-Tc disorder by means of a perturbative renormalization group.

They found that the renormalization group flow on the critical (ε,∆)-surface asymptotically

approaches the clean Ising fixed point ε = 0,∆ = 0. (Here, ∆ is a measure of the disorder

strength.) This implies a continuous transition that is, surprisingly, in the clean 2D Ising

universality class, apart from logarithmic corrections analogous to those occurring in the

disordered Ising model [18, 19, 20, 21]. The following finite-size scaling behavior has

been derived [22, 23, 24]. At criticality (T = Tc), the specific heat shows a characteristic

double-logarithmic dependence on the system size,

C ∼ ln ln L . (2)

Magnetization and susceptibility at Tc (averaged over all N colors) behave as

M ∼ L−β/ν (1 + bM/ln L) , (3)
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χ ∼ Lγ/ν (1 + bχ/ln L) , (4)

where γ/ν = 7/4 and β/ν = 1/8 as in the clean Ising model, and bM and bχ are constant.

Any quantity R of scale dimension zero behaves as

R = R∗ (1 + bR/ln L) , (5)

dR/dT ∼ L1/ν(ln L)−1/2 [1 +O(1/(ln L))] (6)

with the clean Ising exponent ν = 1. The finite-size scaling forms (5) and (6) hold for the

Binder cumulants

gav =

[
1 −

〈m4〉

3〈m2〉2

]
dis

, ggl = 1 −
[〈m4〉]dis

3[〈m2〉]2dis
. (7)

Here, 〈. . .〉 denotes the thermodynamic (Monte-Carlo) average while [. . .]dis stands for the

disorder average. We need to distinguish average and “global” versions of this quantity,

depending on when the disorder average is performed. The scaling forms (5) and (6) also

hold for the correlation length ratios ξav/L and ξgl/L. In our simulations, the correlation

lengths are computed from the second moment of the spin correlation function G(r) =

(1/L2)
∑

i, j,α〈Sαi Sαj 〉δ(r−ri j) [25, 26, 27]. They can be obtained efficiently from the Fourier

transform G̃(q) of the correlation function:

ξav =


(
G̃(0) − G̃(qmin)

q2
minG̃(qmin)

)1/2dis , (8)

ξgl =

(
[G̃(0) − G̃(qmin)]dis

q2
min[G̃(qmin)]dis

)1/2

. (9)

Here, qmin = 2π/L is the minimum wave number that fits into a system of linear size L.
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3. MONTE CARLO SIMULATIONS

3.1. METHOD AND OVERVIEW. To simulate the thermodynamics of the four-

color Ashkin-Teller model (1), we employ an embedding algorithm analogous to that used

in Refs. [16, 28]. It is based on a simple observation. If the spins of colors α = 2, 3 and 4

are fixed, the Hamiltonian (1) is equivalent to an Ising model for the spins S(1)i with effective

interactions Jeffi j = J + ε J(S(2)i S(2)j +S(3)i S(3)j +S(4)i S(4)j ). This (embedded) Ising model can be

simulated using any valid Monte-Carlo method. Analogous embedded Ising models can be

constructed for the spins S(2)i , S(3)i , and S(4)i . By combining Monte-Carlo updates for all four

embedded Ising models we obtain a valid Monte-Carlo method for the entire Ashkin-Teller

Hamiltonian.

Using this algorithm, we simulate systems with sizes from 352 to 22402 sites with

periodic boundary conditions and dilution p = 0.3. All results are averaged over a large

number of disorder configurations (10,000 to 500,000), details will be given below. We

combine Wolff single-cluster updates [29] with Swendsen-Wang multi-cluster updates [30].

The latter help equilibrating small isolated clusters of sites that occur for larger dilutions.

Specifically, each full Monte Carlo sweep consists of a Swendsen-Wang sweep for each

color and a Wolff sweep (a number of single-cluster flips such that the total number of

flipped spins for each color equals the number of lattice sites). We use 100 full Monte

Carlo sweeps for equilibrating each sample (disorder configuration) and 200 sweeps for

measuring observables (one measurement per sweep). The actual equilibration times are

much shorter [16]. Biases in the observables due to the short measurement periods are

overcome by using improved estimators [16].

The Wolff and Swendsen-Wang algorithms are only valid as long as all effective

interactions of the embedded Ising models, Jeffi j = J + ε J(S(2)i S(2)j + S(3)i S(3)j + S(4)i S(4)j ), are

not negative. In the worst case, the term in parenthesis can take the value −3. The coupling

constant ε therefore must not exceed 1/3. In the production runs, we use the largest possible

value, ε = 1/3, because this leads to a strong first-order transition in the clean case.
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3.2. RESULTS. To find the phase transition of the four-color Ashkin-Teller model

with coupling ε = 1/3 and dilution p = 0.3 we perform a series of simulation runs using

linear system sizes L = 35 to 2240. The number of disorder realizations ranges from500,000

for the smallest systems to 10,000 for the largest ones. As usual, the critical temperature

Tc can be determined from the crossings of the Binder cumulant vs. temperature curves for

different system sizes (and analogously from the crossings of the reduced correlation length

curves ξ/L vs. T).

The Binder cumulant ggl as a function of temperature T is shown in Fig. 1, and

Fig. 2 presents the reduced correlation length ξgl/L as a function of temperature T . Similar

graphs can be created for the quantities gav and ξav/L. In all cases, the crossing points

of their curves for different L move with increasing L. This indicates that corrections to

the leading scaling behavior are important for the studied system sizes. To find the true,

asymptotic value of the critical temperature, we therefore need to extrapolate the crossing

points to infinite system size. To do so, we find the crossing temperature Tx(L/2, L) of the
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Fig. 1. Binder cumulant ggl vs. temperatureT of the site-diluted two-dimensional four-color
Ashkin-Teller model with p = 0.3 and ε = 1/3 for different linear system sizes L. The shift
towards higher temperatures of the crossing point with increasing L is caused by corrections
to scaling.
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Fig. 2. Reduced correlation length ξgl/L vs. temperature T for different linear system sizes
L. With increasing L, the crossings move to lowerT , again indicating corrections to scaling.

ggl vs. T curves for system sizes L/2 and L as well as the analogous crossing temperatures

for gav, ξgl/L, and ξav/L. The resulting dependence of the crossing temperatures on the

system size is presented in Fig. 3. The figure shows that all crossings approach the same

temperature as L increases. Fits to the heuristic relation Tx(L/2, L) = Tc + aL−b yield a

critical temperature of Tc = 1.9639(3) (the number in parentheses is an estimate of the error

of the last digits).

To determine the critical behavior, we now analyze the finite-size scaling properties

of various observables right at Tc. The data analysis follows Ref. [16] and is based on the

finite-size scaling forms (2) to (6). Fig. 4 presents a double-logarithmic plot of specific

heat C vs. system size L. The specific heat increases more slowly than a power law

with L, as indicated by the downward curvature of the graph. In agreement with the

prediction (2), the data can be fitted well to the form a ln[b ln(cL)] over the entire size

range. The fit is of high quality, giving a reduced error sum χ̄2 ≈ 0.8. (The reduced error

sum of a fit of n data points (xi, yi) to a function f (x) having q fit parameters is defined as

χ̄2 = 1/(n−q)
∑

i[yi− f (xi)]
2/σ2

i whereσi is the standard deviation of yi.) For comparison,

we have also attempted to fit the specific heat to the simple logarithmic form a ln(bL) and to
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Fig. 3. Crossing temperatures Tx(L/2, L) vs. inverse system size 1/L. The solid lines are
fits to Tx(L/2, L) = Tc + aL−b yielding Tc = 1.9639(3). The error bars of Tx are about a
symbol size for the smallest L, they become much smaller with increasing L.
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Fig. 4. Double-logarithmic plots of the specific heat C and the slopes L−1d ln(ξgl/L)/dT
and L−1d ln(ξav/L)/dT vs. system size L at the critical temperature of Tc = 1.9639. The
error bars are smaller than the symbol sizes. The solid lines are fits to a ln[b ln(cL)] for C
and a[ln(bL)]−1/2 for the slopes.
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C∞ − aL−b. The latter function corresponds to power-law scaling with a negative finite-size

scaling exponent α/ν = −b. The power-law fit is of poor quality with a reduced error sum

χ̄2 ≈ 4.3, and the simple logarithmic fit is completely off, giving χ̄2 ≈ 420.

Fig. 4 also presents the slopes d ln(ξgl/L)/dT and d ln(ξav/L)/dT of the normalized

correlation lengths vs. temperature curves at Tc. We have divided out the power law

d ln(ξ/L)/dT ∼ L of the clean Ising universality class to make the corrections predicted in

eq. (6) more easily visible. The figure demonstrates that these corrections are not of power-

law type, instead the data can be fitted well by the predicted logarithmic form a[ln(bL)]−1/2,

yielding reduced error sums χ̄2 of about 0.3 for ξav and 0.9 for ξgl.

In addition, we study the system size dependence of the magnetization and the

magnetic susceptibility at the critical temperature. According to eqs. (3) and (4), these

quantities are predicted to follow the clean Ising power laws with additive logarithmic

corrections. We again divide out the clean Ising power laws and plot the resulting quantities,

viz., M L1/8 and χ L−7/4 in Fig. 5. The figure demonstrates that the corrections to the Ising

universality class are not of power-law form. Moreover, they are very weak, in particular

for the magnetization where they change the value by less than 1% over the entire system

size range. To capture this small correction, we had to increase the number of disorder
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-7
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 magnetization M
 susceptibility 

Fig. 5. Double-logarithmic plots of M L1/8 and χ L−7/4 vs. L at the critical temperature of
Tc = 1.9639. The solid lines are fits to a[1 + b/ln(cL)], as suggested by eqs. (3) and (4).
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configurations significantly (500,000 for all system sizes) to reduce the error bars. The

larger numerical effort limits these simulations to system sizes between L = 35 and 800.

Both M L1/8 and χ L−7/4 can be fitted well to the function a[1+ b/ln(cL)] predicted by the

renormalization group results (3) and (4). The reduced error sums χ̄2 are approximately

0.4 for the susceptibility and 0.3 for the magnetization.

4. SUMMARY AND CONCLUSIONS

In summary, we have carried out large-scale Monte Carlo simulations of the site-

diluted two-dimensional four-color Ashkin-Teller model. Our results confirm that the first-

order phase transition occurring in the undiluted (clean) model is rounded by the disorder,

as required by the Aizenman-Wehr theorem [4].

We have used finite-size scaling of the magnetization, magnetic susceptibility, spe-

cific heat and correlation length to determine the universality class of the emerging continu-

ous phase transition. All our data agree very well with the results of the perturbative renor-

malization group [11, 12, 13] which predicts critical behavior in the clean two-dimensional

Ising universality class, but with logarithmic corrections similar to those occurring in the

two-dimensional disordered Ising model. These findings agree with those of extensive

high-accuracy simulations of the three-color case [16]. Consequently, they provide strong

evidence for the universality of the critical behavior of the disordered Ashkin-Teller model.

Possible reasons for the discrepancies between our results (Ref. [16] and the present

paper) and those of the earlier simulations [14, 15] were discussed in detail in Ref. [16].

Here, we just reiterate the main points: Our systems are much larger, up to 22402 sites

(compared to just 322 sites in Ref. [14] and 1282 sites in Ref. [15]). This suggests that the

earlier simulations were not in the asymptotic regime, especially for weak disorder where

the crossover from the clean first-order transition to the disordered continuous one is slow.

Note, however, that a discrepancy exists already for the clean three-color model. The clean
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phase diagram of Ref. [16], which was determined and verified using three independent

Monte Carlo algorithms, coincides with older results by Grest and Widom [8] but disagrees

with Ref. [14].

From a more general point of view, the renormalization groups results for the

random-Tc Ising [18, 19, 20, 21] and Ashkin-Teller [12] models suggested a kind of “super-

universality” of critical points in two-dimensional disordered systems. This idea was

initially supported by computer simulations of disordered Ising[31, 32], Ashkin-Teller[28],

and Potts[28, 33] models as well as interface arguments [34]. Numerical sudies of the

disordered q-state Potts model[35, 36] showed, however, that the finite-size scaling exponent

β/ν differs from the Ising value and varies with q. Moreover, the phase transition in the

random-bond Blume-Capel model was also found to display complex non-Ising behavior,

at least for strong disorder [37, 38, 39].

Recently, the disordered quantum Ashkin-Teller spin chain has attracted lots of

interest because it serves as a paradigmatic model for studying disorder effects at first-

order quantum phase transitions. As a quantum version of the Aizenman-Wehr theorem has

been proven [40], the first-order character of the transition in the clean problemmust change

upon the introduction of disorder. Recent strong-disorder renormalization group approaches

predict continuous transitions governed by infinite-randomness critical points in different

universality classes, depending on the coupling strength ε [41, 42, 43]. Furthermore, in

the case of two colors an exotic strong-disorder infinite-coupling phase [44] is predicted to

appear for large ε . These predictions can be tested by generalizations of our Monte Carlo

method to the (1 + 1)-dimensional quantum case. Some work along these lines is already

in progress.

It may also be interesting to investigate the Ashkin-Teller model defined on a topo-

logically disordered lattice such as the random Voronoi-Delaunay lattice (see, e.g., [45]).

Recent work [46] has shown that the Imry-Ma argument does not hold for these lattices
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because a topological constraint suppresses the disorder fluctuations. This leaves open the

possibility that the first-order phase transition survives in the presence of such topological

disorder.
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ABSTRACT*

We investigate the zero-temperature quantum phase transitions of the disordered

three-color quantum Ashkin-Teller spin chain by means of large-scale Monte Carlo sim-

ulations. We find that the first-order phase transitions of the clean system are rounded

by the quenched disorder. For weak inter-color coupling, the resulting emergent quantum

critical point between the paramagnetic phase and the magnetically ordered Baxter phase is

of infinite-randomness type and belongs to the universality class of the random transverse-

field Isingmodel, as predicted by recent strong-disorder renormalization group calculations.

We also find evidence for unconventional critical behavior in the case of strong inter-color

coupling, even though an unequivocal determination of the universality class is beyond

our numerical capabilities. We compare our results to earlier simulations, and we discuss

implications for the classification of phase transitions in the presence of disorder.
*Published in Physical Review B 95, 054403 (2017).
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1. INTRODUCTION

Zero-temperature quantum phase transitions can be classified into continuous or

first-order just as classical thermal phase transitions. First-order quantum phase transitions

have gained considerable attention recently, not only because of their fundamental interest

but also because experimentally important transitions turn from being continuous at higher

temperatures to first-order at lower temperatures. A prominent example of this behavior

is the itinerant ferromagnetic transition [1, 2]. (For a recent review of metallic quantum

ferromagnets see Ref. [3].)

As real materials always contain a certain amount of vacancies, impurities, or other

defects, understanding the influence of such quenched disorder is of both conceptual and

practical importance. Theoretical research on continuous quantum phase transitions in

the presence of disorder has predicted a number of exotic phenomena such as infinite-

randomness critical points [4, 5, 6], quantum Griffiths phases [7, 8], and smeared phase

transitions [9]. More recently, several of these phenomena have been observed in experi-

ments [10, 11, 12, 13]. A classification of strong-disorder effects was developed in Ref. [14]

and refined in Ref. [15], see also Refs. [16] for reviews.

In contrast, less is known about first-order quantum phase transitions in the presence

of disorder. Greenblatt et al. [17] proved a quantum version of the classical Aizenman-Wehr

theorem [18, 19, 20] that states that first-order phase transitions cannot exist in disordered

systems in d ≤ 2 space dimensions. (If the disorder breaks a continuous symmetry, the

marginal dimension is d = 4.) This agrees with a few available explicit results: Senthil and

Majumdar [21] predicted that quenched randomness turns the first-order quantum phase

transitions of the quantum Potts and clock chains into infinite-randomness critical points in

the random transverse-field Ising universality class. The same was found by Goswami et

al. [22] for the disordered N-color one-dimensional quantum Ashkin-Teller model [23] in
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the weak-coupling regime (weak interactions between the colors). In the strong-coupling

regime, the critical point between the paramagnetic and Baxter phases is still of infinite-

randomness type, but it is predicted to be in a different universality class [24, 25].

All these results were obtained using versions of the strong-disorder renormalization

group [26] which becomes controlled in the limit of infinitely strong disorder. It is therefore

highly desirable to verify that the predictions also hold for realistic, weakly or moderately

disordered systems. A recent Monte Carlo study of the quantum Ashkin-Teller model

[27] provided evidence for the activated scaling expected at an infinite-randomness critical

point. However, the authors could not verify the predicted random transverse-field Ising

universality class and suggested that the discrepancy stems, perhaps, from the first-order

origin of this transition.

To shed some light onto this question, we map the disordered three-color quantum

Ashkin-Teller chain onto a (1+1) dimensional classical Hamiltonianwith columnar disorder.

We investigate this classical model by means of large-scale Monte Carlo simulations for

systemswith up to 3.6million lattice sites (10.8million spins). In theweak-coupling regime,

we find universal critical behavior in the random transverse-field Ising universality class,

as predicted by the strong-disorder renormalization group. We also perform exploratory

simulations in the strong coupling regime that establish the phase diagram and confirm

unconventional activated dynamical scaling. However, because the efficient cluster Monte

Carlo algorithms we use in the weak-coupling regime are not valid for strong coupling, we

can not quantitatively verify the distinct critical behavior predicted in Refs. [24, 25].

The rest of the paper is organized as follows. In Sec. 2, we introduce the quantum

Ashkin-Teller chain and the mapping onto a classical Hamiltonian. We also summarize the

predictions of the strong-disorder renormalization group calculations. Sec. 3 is devoted to

the Monte Carlo simulations and their results. We conclude in Sec. 6.
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2. MODEL AND THEORY

2.1. QUANTUM ASHKIN-TELLER CHAIN. The N-color quantum Ashkin-

Teller chain [23, 28] is a generalization of the original model suggested by Ashkin and

Teller many decades ago [29]. It is made up of N coupled identical transverse-field Ising

chains each containing L spins. The quantum Hamiltonian can be expressed as

H = −

N∑
α=1

L∑
i=1

(
Jiσ

z
α,iσ

z
α,i+1 + hiσ

x
α,i

)
(1)

−

N∑
α<β

L∑
i=1

(
Kiσ

z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + giσ

x
α,iσ

x
β,i

)
.

Here, σx and σz are Pauli matrices describing the spin degrees of freedom. i denotes

the lattice sites while α and β are color indices. The ratios εh,i = gi/hi and εJ,i = Ki/Ji

characterize the strengths of the inter-color coupling. In the following, we are interested in

the case of positive interactions Ji, Ki and fields hi, gi. Besides its fundamental interest,

different versions of the Ashkin-Teller model have been used to describe absorbed atoms on

surfaces [30], organic magnets, current loops in high-temperature superconductors [31, 32],

as well as the elastic response of DNA molecules [33].

In the clean quantum Ashkin-Teller chain, the interactions Ji ≡ J, transverse fields

hi ≡ h, as well as the inter-color coupling ratios εJ,i ≡ εJ and εh,i ≡ εh are uniform in

space. The ground state phases of this model are easily understood qualitatively. If the

inter-color coupling ratios εJ, εh � 1, the behavior is dominated by the transverse-field Ising

chain terms in the first line of Eq. (1). The system is thus in the paramagnetic phase if the

transverse fields are larger than the interactions, h � J, but in the ordered (Baxter) phase for

h � J. In the Baxter phase, each color orders ferromagnetically but the relative orientation

of different colors is arbitrary. An additional phase, the so-called product phase, can appear

between the paramagnetic and Baxter phases for strong inter-color coupling, εJ, εh � 1. In

this phase, products σz
α,iσ

z
β,i of two spins of different colors develop long-range order while



86

the spins σz
α,i themselves remain disordered. (For a qualitative overview of the phases, see

Fig. 1 which shows the phase diagram of the disordered Ashkin-Teller model for a particular

set of parameters; here the classical temperature Tc encodes the ratio h/J.) For at least three

colors, the direct quantum phase transition between the paramagnetic and Baxter phases

is known to be of first-order [23, 28, 34]. The quantum Ashkin-Teller chain is therefore

a paradigmatic model for studying the effects of disorder on a first-order quantum phase

transition.

Note that the formof theHamiltonian (1) is invariant under the duality transformation

σz
α,iσ

z
α,i+1 → σ̃x

α,i, σ
x
α,i → σ̃z

α,iσ̃
z
α,i+1, Ji � hi, and εJ,i � εh,i, where σ̃x

α,i and σ̃
z
α,i are the

dual Pauli matrices [35]. Self-duality therefore requires that a direct transition between the

paramagnetic and Baxter phases (for εh = εJ) must occur exactly at h = J.

2.2. RENORMALIZATION GROUP PREDICTIONS. We now briefly sum-

marize the results of several strong-disorder renormalization group calculations for the

N-color random quantum Ashkin-Teller chain. Goswami et al. [22] analyzed the weak-

coupling regime and found that the inter-color coupling ratios εJ,i, εh,i renormalize to zero,

and the renormalization group flow becomes asymptotically identical to that of the one-
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c

T c

Paramagnetic  

Product

Baxter

Fig. 1. Phase diagram of the classical Hamiltonian (3) for N = 3 colors and disorder
distribution (4) with Jh = 1, Jl = 0.25, and c = 0.5. The dots and triangles mark the
numerically determined transitions between the Baxter, product, and paramagnetic phases.
The solid lines are guides to the eye only. The dashed line marks εc = 1.281 [see Eq. (2)]
which separates theweak and strong coupling regimes in the strong-disorder renormalization
group calculations.
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dimensional random transverse-field Ising model [4]. More specifically, this happens if all

initial (bare) εJ,i and εh,i are smaller than a critical value

εc(N) =
2N − 5
2N − 2

+

√(
2N − 5
2N − 2

)2
+

2
N − 1

. (2)

(For three colors, εc ≈ 1.281.) In the weak-coupling regime, the strong disorder renormal-

ization group thus predicts that the first-order quantum phase transition of the clean chain

is rounded to a continuous one, with infinite-randomness critical behavior in the random

transverse-field Ising universality class [4].

The strong-coupling regime of the random quantumAshkin-Teller chain was studied

in Refs. [24, 25, 36]. Using a different implementation of the strong-disorder renormal-

ization group, these papers demonstrated that the inter-color coupling ratios εJ,i and εh,i

renormalize to infinity if their initial (bare) values are larger than εc. This implies that the

four-spin interactions and the two-spin field terms in the Hamiltonian dominate the behavior

of the system.

If εJ,i = εh,i, the model is self-dual at the critical point. In this case and for at least

three colors, there is still a direct transition between the paramagnetic and Baxter phases,

i.e., spins and products order at the same point. This transition occurs at Jtyp = htyp where

Jtyp and htyp refer to the typical values (geometric means) of the random interactions and

fields. The critical behavior of this transition is of infinite randomness type but it is not in

the random transverse Ising universality class because products and spins both contribute

to observables [24, 25]. In the general case, εJ,i , εh,i, a product phase can appear between

the paramagnetic and Baxter phases (this also happens for two colors, even in the self-dual

case) [36]. The phase transition between the paramagnetic and product phases as well as

the transition between the product and Baxter phases are both expected to belong to the

random transverse-field Ising universality class.
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2.3. QUANTUM-TO-CLASSICALMAPPING. To test the renormalization group

predictions by Monte Carlo simulations, we now map the random quantum Ashkin-Teller

chain onto a (1+1)-dimensional classical Ashkin-Teller model. This can be done using

standard methods, e.g., by writing the partition function as a Feynman path integral in

imaginary time (see also Ref. [37]). The resulting classical Hamiltonian reads:

Hcl = −
∑
α,i,t

(
J(s)i Sαi,tS

α
i+1,t + J(t)i Sαi,tS

α
i,t+1

)
−

∑
α<β,i,t

(
ε
(s)
i J(s)i Sαi,tS

α
i+1,tS

β
i,tS

β
i+1,t

)
−

∑
α<β,i,t

(
ε
(t)
i J(t)i Sαi,tS

α
i,t+1Sβi,tS

β
i,t+1

)
. (3)

Here, Sαi,t = ±1 is a classical Ising spin of color α at position i in space and t in (imaginary)

time. The classical interactions J(s)i , J(t)i and inter-color coupling ratios ε (s)i , ε (t)i as well

as the classical temperature T are determined by the parameters of the original quantum

Hamiltonian (1). (The classical temperatureT does not equal the physical temperature of the

quantum system (1) which is encoded in the system size Lt in time direction.) Specifically,

the inter-color coupling ratio ε (s)i is identical to εJ,i of the quantum Hamiltonian but ε (t)i

is not identical to εh,i. Instead, it is a complicated function of the transverse field and the

two-color field terms. We also note that the quantum-to-classical mapping generates further

terms in the classical Hamiltonian in addition to those shown in (3). These extra terms

contain higher products of up to N colors.

As we are interested in the critical behavior which is expected to be universal, the

precise values of J(s)i , J(t)i , ε (s)i , and ε (t)i are not important and can be chosen for computational

convenience (see Sec. 3). Moreover, we can neglect the terms that contain products of more

than two colors [38].
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3. MONTE CARLO SIMULATIONS

3.1. OVERVIEW. We perform large-scale Monte Carlo simulations of the classi-

cal Hamiltonian (3) for the case of N = 3 colors by employing an Ising embedding method

similar that used in Ref. [39]. It can be understood as follows. If we fix the values of all

spins with color α , 1, the Hamiltonian (3) acts as an (1+1)-dimensional Ising model for

the spins S(1)i,t with effective interaction Jeffi j = J + ε J(S(2)i S(2)j + S(3)i S(3)j ). This embedded

Ising model can be simulated by means of any Ising Monte Carlo algorithm. We use a com-

bination of the efficient Swendsen-Wang multicluster algorithm [40] and the Wolff single

cluster algorithm [41]. Analogous embedded Ising models can be constructed for the spins

S(2)i,t and S(3)i,t , and by performing cluster updates for all three embedded Ising models we

arrive at a valid and efficient algorithm for the Ashkin-Teller model.

The Swendsen-Wang and Wolff cluster algorithms require all interactions to be

nonnegative, Jeff ≥ 0 [42].

This is only guaranteed if the coupling ratio ε does not exceed 1/(N − 1) =

1/2. For larger ε , we perform exploratory simulations using the less efficient Metropo-

lis algorithm[43] as well as the Wang-Landau method [44].

By means of these algorithms, we simulate systems with linear sizes L = 10 to

60 in space direction and Lt = 2 to 60,000 in (imaginary) time direction, using periodic

boundary conditions. The largest system had 3.6 million lattice sites, i.e., 10.8 million

spins. To implement the quenched disorder, we consider J(s)i and J(t)i to be independent

random variables drawn from a binary probability distribution

W(J) = cδ(J − Jh) + (1 − c)δ(J − Jl) (4)

where c is the concentration of the higher value Jh of the interaction while 1 − c is the

concentration of the lower value Jl . The inter-color coupling ratios are uniform, ε (s)i = ε
(t)
i =

ε (implying that the disorders in K and g are identical to those in J and h, respectively)
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[45]. As J(s)i and J(t)i only depend on the space coordinate i but not on the time coordinate

t, the resulting disorder is columnar, i.e., perfectly correlated in the time direction. In the

simulations, we use Jh = 1, Jl = 0.25, and c = 0.5 while ε takes values between 0 and 5. All

observables are averaged over 10,000 to 40,000 disorder configurations, unless otherwise

noted.

When using cluster algorithms (ε ≤ 0.5), we equilibrate each sample using 100 full

Monte Carlo sweeps. Each full sweep is made up of aWolff sweep for each color (consisting

of a number of single-cluster flips such that the total number of flipped spins equals the

number of lattice sites) and a Swendsen-Wang sweep for each color. The Swendsen-Wang

sweep aims at equilibrating small clusters of weakly coupled sites that may be missed

by the Wolff algorithm. The actual equilibration is significantly faster than 100 sweeps.

[46] The measurement period consists of another 100 full Monte Carlo sweeps with a

measurement taken after each sweep. To deal with biases introduced by using such short

measurement periods, we employ improved estimators [46]. Simulations for ε > 0.5 that

use the Metropolis and Wang-Landau methods require much longer runs, details will be

discussed below.

During the simulation runs, we measure the following observables: energy, specific

heat, total magnetization

m =
1

3LLt

∑
α

�����∑
i,t

Sαi,t

����� (5)

and its susceptibility χm. A particularly useful quantity for the finite-size scaling analysis

is the Binder cumulant

gav =

[
1 −

〈m4〉

3〈m2〉2

]
dis

(6)

where 〈. . .〉 denotes the thermodynamic (Monte Carlo) average and [. . .]dis is the disorder

average. In addition, we also measure the product order parameter

p =
1

3LLt

∑
α<β

�����∑
i,t

Sαi,tS
β
i,t

����� , (7)
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the corresponding product susceptibility χp, and the product Binder cumulant gp.

The phase diagram of the classical Hamiltonian (3) resulting from these simulations

is shown in Fig. 1. In the weak-coupling regime, ε < εc, we find a direct transition between

the magnetically ordered Baxter phase at low temperatures and the paramagnetic high-

temperature phase. For strong coupling, ε > εc, these two phases are separated by a product

phase. Interestingly, the value of εc agrees within the numerical errors with the strong-

disorder renormalization group prediction (2) of about 1.281 (even though the disorder is

not infinitely strong, and we have modified the classical Hamiltonian as discussed at the end

of Sec. 2.3). In the following, we study the critical behaviors of the transitions separating

these phases in detail, and we compare them to the renormalization group predictions.

3.2. WEAK COUPLING REGIME. In the weak-coupling regime, ε < εc, we

perform simulations for coupling ratios ε = 0, 0.3 and 0.5 employing the Wolff and

Swendsen-Wang cluster algorithms as discussed above. Because the disorder breaks the

symmetry between the space and (imaginary) time directions in the Hamiltonian (3), the

finite-size scaling analysis of the data to find the critical exponents becomes more com-

plicated. This is caused by the fact that the system sizes L and Lt in the space and time

directions are expected to have different scaling behavior. Thus, the correct aspect ratios

Lt/L of the samples to be used in the simulations are not known a priori.

To overcome this problem we follow the iterative method employed in Refs. [47, 48,

49, 50] which is based on the Binder cumulant. As the renormalization group calculations

predict infinite-randomness criticality with activated dynamical scaling, the scaling form of

the Binder cumulant (which has scale dimension 0) reads

gav(r, L, Lt) = Xg(rL1/ν, ln(Lt/L0
t )/L

ψ) . (8)
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Here r = (T − Tc)/Tc denotes the distance from criticality, Xg is a scaling function, and ψ

and ν refer to the tunneling and correlation length critical exponents. L0
t is a microscopic

reference scale. (For conventional power-law scaling, the second argument of the scaling

function would read Lt/Lz with z being the dynamical exponent.) For fixed L, gav has a

maximum as function of Lt at position Lmax
t and value gmax

av . The position of the maximum

yields the optimal sample shape for which the system sizes L and Lt behave as the correlation

lengths ξ and ξt . At criticality Lt must thus behave as ln(Lmax
t /L0

t ) ∼ Lψ , fixing the second

argument of the scaling function Xg. Consequently, the peak value gmax
av is independent of

L at criticality, and the gav vs. r curves of optimally shaped samples cross at T = Tc. Once

the optimal sample shapes are found, finite-size scaling proceeds as usual [51, 52].

To test our simulation and data analysis technique, we first consider the case ε = 0

for which the quantum Ashkin-Teller model reduces to three decoupled random transverse-

field Ising chains whose quantum phase transition is well understood [4]. We perform

simulations for sizes L = 10 to 50 and Lt = 2 to 20000 and find a critical temperature

Tc ≈ 1.24. At this temperature, we confirm the activated scaling (8) of the Binder cumulant

with the expected value ψ = 1/2. We also confirm the scaling of the magnetization at Tc

(for the optimally shaped samples), m ∼ L−β/ν with β = 0.382 and ν = 2.

After this successful test, we now turn to the Ashkin-Teller model proper. We

perform two sets of simulations: (i) ε = 0.5 using system sizes L = 10 to 60, Lt = 2 to

60000 and (ii) ε = 0.3 with system sizes L = 10 to 50, Lt = 2 to 40000. In each case,

we start from a guess for the optimal shapes and find an approximate value of Tc from

the crossing of the gav vs. T curves for different L. We then find the maxima of the gav

vs. Lt curves at this temperature which yield improved optimal shapes. After iterating this

procedure two or three times, we obtainTc and the optimal shapes with reasonable precision.

Fig. 2 shows the resulting Binder cumulant gav for ε = 0.5 as function of Lt for

different L at the approximate critical temperature of Tc = 2.08(5). As expected at Tc,

the maxima gmax
av of these curves are independent of L (the slightly lower values at the
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Fig. 2. Binder cumulant gav as a function of Lt for several L at the critical temperature
Tc = 2.08 for ε = 0.5. The statistical error of gav is smaller than the symbol size.

smallest L can be attributed to corrections to scaling). Moreover, the figure shows that

the gav vs. Lt domes rapidly become broader with increasing spatial size L, indicating

non-power-law scaling. To analyze this quantitatively, we present a scaling plot of these

data in Fig. 3. For conventional power-law dynamical scaling, the curves for different L

should collapse onto each other when plotted as gav vs. Lt/Lmax
t . The inset of Fig. 3 clearly

demonstrates that this is not the case. In contrast, the Binder cumulant scales well when
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according to Eq. (8). The microscopic scale L0
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plotted versus ln(Lt/L0
t )/ln(Lmax

t /L0
t ) as shown in the main panel of the figure. (Here, we

treat the microscopic scale L0
t as a fit parameter). This behavior is in agreement with the

activated scaling form (8).

We perform the same analysis for ε = 0.3 at the approximate critical temperature

of Tc = 1.76(3), with analogous results. To verify the value of the tunneling exponent ψ,

we now analyze the dependence of Lmax
t on L. Fig. 4 shows that the data for both ε = 0.3

and 0.5 can be well fitted with the relation ln(Lmax
t /L0

t ) ∼ Lψ with ψ = 1/2 as predicted

by the strong-disorder renormalization group. The inset of this figure clearly demonstrates

that the relation between Lmax
t and L cannot be described by a power law. We can define,

however, an effective (scale-dependent) dynamical exponent zeff = d ln(Lmax
t )/d ln(L). For

ε = 0.5, it increases from about 2 for the smallest system sizes to almost 4 for the largest

ones.

We now turn to the critical behavior of magnetization and susceptibility. At the

critical temperature, the magnetization of the optimally shaped samples is predicted to show

a power-law dependence on the spatial system size, m ∼ L−β/ν with β = 2 − φ ≈ 0.382 and

ν = 2. Here, φ = (
√

5 + 1)/2 is the golden mean. In the left panel of Fig. 5, we therefore

present a double logarithmic plot of m vs. L for ε = 0.3 and 0.5. The data for both coupling
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t ) vs. L0.5 at criticality for ε = 0.3 and 0.5. The data for ε = 0.3 are
shifted upwards by 0.3 for clarity. The solid lines are linear fits. Inset: Double logarithmic
plot of Lmax

t vs. L.
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2φ−2 for optimally shaped samples at criticality

for ε = 0.3 and 0.5. The solid lines are linear fits. The statistical errors of the data in both
panels are smaller than the symbol size.

ratios can be fitted well with the predicted power law. While the magnetization follows

a conventional power law dependence on the system size, the susceptibility is affected by

the activated scaling. Its predicted system size dependence at criticality can be expressed

in terms of the temporal size Lt as χ ∼ Lt[ln(Lt/L0
t )]

2φ−2. We test this prediction in

the right panel of Fig. 5 by plotting χ/Lt vs. [ln(Lt/L0
t )]

2φ−2 for the optimally shaped

samples. As the leading power law is divided out, this plot provides a sensitive test of

the logarithmic corrections. The figure shows that the susceptibility indeed follows the

predicted Lt dependence for system sizes L > 20. The deviations for the smaller sizes

can likely be attributed to corrections to scaling stemming from the crossover between the

clean first-order phase transition and the infinite-randomness critical point that governs the

asymptotic behavior. The clean first-order phase transition is stronger for ε = 0.5 than for

0.3; accordingly, χ shows stronger corrections to scaling for ε = 0.5.

Finally, we analyze the slope dgav/dT of the Binder cumulant at criticality. It

is expected to vary with system size as dgav/dT ∼ L1/ν with ν = 2. As is shown in

Fig. 6, our slopes indeed follow the power-law dependence predicted by the strong-disorder

renormalization group for both coupling ratios, ε = 0.3 and 0.5.
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3.3. STRONG COUPLING REGIME. In the strong-coupling regime ε > εc ≈

1.281, we perform simulations for coupling ratios ε = 1.7, 2.5, 3.5, and 5. These simulations

greatly suffer from the fact that the embeddedWolff and Swendsen-Wang cluster algorithms

are not valid for ε > 0.5. We are thus forced to employ theMetropolis single-spin algorithm.

In this algorithm, the required equilibration and measurement times increase significantly

with system size, reaching several hundred thousand sweeps for moderately large lattices.

This severely limits the available sizes and the accuracy of the results. For comparison, we

also performWang-Landau simulations but the available system sizes are restricted as well.

As the classical Hamiltonian (3) is not self-dual, we can expect a product phase to

appear for ε > εc. Indeed, for all studied ε values, we find two distinct phase transitions.

(This can already be seen from the specific heat data shown in the left panel of Fig. 7.)

The product order parameter p, Eq. (7), develops at a higher temperature T p
c while the

magnetization becomes nonzero only below a lower temperature Tm
c (see phase diagram in

Fig. 1). In the following, we look at these two transitions separately.

To analyze the transition between the product and Baxter phases (at which the

magnetization becomes critical), we use the same procedure based on the Binder cumulant

gav as in Sec. 3.2. The right panel of Fig. 7 shows the Binder cumulant at the estimated
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two distinct peaks corresponding to two separate phase transitions. Right: Binder cumulant
gav as a function of Lt for several L at the critical temperature Tc = 3.65 for ε = 1.7.

critical temperature Tm
c = 3.65 for ε = 1.7 as a function of Lt for several L between 10 and

25. As expected at criticality, the maximum value for each of the curves does not depend on

L. The figure also shows that the domes become broader with increasing L, indicating non-

power-law scaling. The largest spatial system size, L = 25 requires an enormous numerical

effort, we averaged over 20,000 disorder configurations each using 700,000 Monte Carlo

sweeps. Nonetheless the Binder cumulant at the right end of the dome (Lt = 200) is not

fully equilibrated as its value shifts with increasing number of sweeps. Because of the

limited system size range and the equilibration problems for the larger sizes we are not able

to quantitatively analyze the critical behavior of this transition.

Similar problems, though slightly less severe, also plague the transition between

the paramagnetic and product phases at which the product order parameter p becomes

critical. Fig. 8 shows the Binder cumulant gp for the product order parameter at the

estimated critical temperature T p
c = 7.55 and ε = 3.5 as a function of Lt . The maxima

of the different curves are again independent of L, as expected at the critical temperature.

Moreover, the domes broaden with increasing system size. A scaling analysis of these data

is presented in Fig. 9. The inset shows that the behavior of gp is not compatible with
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conventional power-law scaling. In contrast, the data scale reasonably well when plotted

versus ln(Lt/L0
t )/ln(Lmax

t /L0
t ) as shown in the main panel of the figure. This behavior is in

agreement with activated scaling in analogy to Eq. (8) for the Binder cumulant gav of the

magnetization. The deviations from data collapse for large Lt (ie., at the right side of the

domes) stem from the fact that these systems do not equilibrate properly despite us using

up to 500,000 Monte Carlo sweeps for each of the 20,000 disorder configurations (the gp

values still drift with increasing number of sweeps). This also prevents us from studying

larger system sizes.

If we ignore the small system size range and the equilibration problems and analyze

(along the lines of Sec. 3.2) the system size dependencies of Lmax
t , the product order parame-

ter p, and its susceptibility χp, we obtain critical exponents that are roughly compatible with

the random transverse-field Ising universality class (as expected from the strong-disorder

renormalization group). We do not believe, however, that this constitutes a quantitative

confirmation, and we cannot rule out a different universality class with somewhat different

critical exponents.

4. CONCLUSIONS

In summary, we have studied the fate of the first-order quantum phase transition in

the three-color quantum Ashkin-Teller spin chain under the influence of quenched disorder.

To this end, we have mapped the random quantumAshkin-Teller Hamiltonian onto a (1+1)-

dimensional classical Ashkin-Tellermodel with columnar disorder. We have then performed

large-scale Monte Carlo simulations for systems with up to 3.6 million lattice sites (10.8

million spins). In agreement with the quantum version of the Aizenman-Wehr theorem, we

have found that the first-order transition of the clean system is rounded to a continuous one

in the presence of bond randomness.
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For weak inter-color coupling ε , efficient cluster Monte Carlo algorithms have

allowed us to simulate large systems. Our data for the quantum phase transition are in full

agreement with the results of the strong-disorder renormalization group calculation [22]

that predicts universal critical behavior in the random transverse-field Ising universality

class. Specifically, we have confirmed for two different values of ε the activated dynamical

scaling with a tunneling exponent ψ = 1/2, the correlation length exponent ν = 2, and the

order parameter exponent β = 2 − φ with φ the golden mean. We have also confirmed the

behavior of the magnetic susceptibility.

In contrast, our simulations for large inter-color coupling ε have been restricted to

smaller system sizes, and they have suffered from equilibration problems because efficient

cluster algorithms are not available. Consequently, we have not been able to fully test the

renormalization group calculations in this regime. Our numerical data provide evidence

for activated dynamical scaling at the quantum phase transitions between the paramagnetic

and product phases as well as between the product and Baxter phases. For the latter

transition we have also determined rough estimates of the critical exponents and found them

compatiblewith the random transverse-field Ising universality class. However, a quantitative

verification of the critical behavior is beyond our current numerical capabilities.

Let us compare our results with earlier simulations. While our critical behavior (in

the weak-coupling regime) fully agrees with the random transverse-field Ising universality

class, some exponents calculated in Ref. [27] show sizable deviations. This is particularly

interesting because the spatial system sizes L used in both simulations are comparable (the

largest L in Ref. [27] is actually larger than ours). We believe that the results of Ref. [27]

do not agree with the renormalization group predictions because the simulations are still

crossing over from the clean first-order transition to the disordered critical point, probably

because the chosen parameters lead to relatively weak disorder. This would mean that the

measured exponent values are effective rather than true asymptotic exponents. Support

for this hypothesis can be obtained from comparing the dynamical scaling in the present
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paper and in Ref. [27]. An infinite-randomness critical point features activated dynamical

scaling, i.e., the temporal system size Lt scales exponentially with the spatial size L via

ln(Lt) ∼ Lψ . This implies that the conventional dynamical exponent z = ∞. The optimal

temporal system size (defined, e.g., via the maximum of the Binder cumulant) therefore

must increase very rapidly with L. Indeed, the inset of Fig. 4 shows that Lmax
t increases

from 18 to about 2000 while L varies only from 10 to 60. The corresponding effective

(scale-dependent) dynamical exponent zeff = d ln(Lmax
t )/d ln(L) reaches almost 4 for the

largest sizes. In contrast, Lmax
t reaches only 224 for L = 96 in Ref. [27] and zeff stays below

2, placing the system further away from the asymptotic regime zeff →∞.

To conclude, as our numerical results (in the weak-coupling regime) fully agree with

the renormalization group predictions, we have not found any indications that the asymptotic

critical behavior of the disordered system “remembers” the first-order origin of the transition.

This supports the expectation that the general classification of disordered critical points

developed in Refs. [14, 15, 16] also holds for critical points emerging from the rounding

of first-order (quantum) phase transitions. However, the crossover from the clean to the

disordered behavior is certainly affected by the first-order nature of the clean transition. The

breakup length beyond which phase coexistence is destroyed by domain formation increases

with decreasing disorder and may exceed the system size. For sufficiently weak disorder,

the true asymptotic behavior is then unobservable in both simulations and experiment. This

crossover will be even slower in (2+ 1)-dimensional systems because d = 2 is the marginal

dimension for the Aizenman-Wehr theorem, suggesting an exponential dependence of the

breakup length on the disorder strength [53, 54].
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ABSTRACT*

We investigate the quantum phase transitions of a disordered nanowire from su-

perconducting to metallic behavior by employing extensive Monte Carlo simulations. To

this end, we map the quantum action onto a (1+1)-dimensional classical XY model with

long-range interactions in imaginary time. We then analyze the finite-size scaling behav-

ior of the order parameter susceptibility, the correlation time, the superfluid density, and

the compressibility. We find that the critical behavior is of infinite-randomness type and

belongs to the random transverse-field Ising universality class, as predicted by a strong

disorder renormalization group calculation.

*All of this section is reproduced from amanuscript in preparation for European Physical Journal B (2018).
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1. INTRODUCTION

Investigating the electrical transport in fluctuating superconductors has attracted

great interest in experimental studies during the last decades [1]. Recently, many experi-

ments [2, 3, 4, 5, 6] have studied the electrical transport characteristics of one-dimensional

ultrathin metallic nanowires. Upon decreasing the temperature, measurements of resistance

have demonstrated that thicker wires display a phase transition from a metal to a supercon-

ducting state. However, thinner wires do not show superconductivity even at the lowest

temperatures T .

The behavior of these experiments can be understood using the concept of a

superconductor-metal quantum phase transition in the pair-breaking universality class, as

proposed in recent work [7, 8, 9]. A characterization of this transition built on micro-

scopic BCS theory suggests a model of superconducting fluctuations damped by decay into

unpaired electrons [10, 11, 12, 13, 14].

Quenched disorder plays a significant role in disordered nanowires due to the random

positions of the pair-breaking magnetic moments. The thermodynamics of this disordered

superconductor-metal quantum phase transition has been studied analytically via a strong-

disorder renormalization group analysis [15] and numerically [9] via a large-N analysis in

which the number of order parameter components is generalized from 2 to N � 1. These

methods predict that the behavior is governed by a nonperturbative infinite-randomness

critical point in the same universality class as the random transverse-field Ising model. It

presents slow activated dynamical scaling rather than conventional (power-law) one, i.e.,

the correlation time ξτ is related to the correlation length ξ as lnξτ ∼ ξψ , where ψ is the

tunneling exponent. Observables also shownonconventional scaling behavior. For example,

with decreasing temperature, the order parameter susceptibility at criticality diverges as

χ ∼
1
T
[ln(1/T)]2φ−d/ψ, (1)
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where φ is the cluster size exponent.

In this paper, we investigate the effects of disorder on the quantum phase transition

between superconductor and metal in thin nanowires by employing a Monte Carlo method.

This allows us to test these predictions directly for N = 2 order parameter components.

Our paper is organized as follows: In Sec. 2, we define the overdamped Cooper pair model

and describe the mapping onto a classical XY Hamiltonian. In Sec. 3, we explain the

renormalization group predictions. Section 4 is devoted to the Monte Carlo simulations. In

Sec. 5, we discuss our results and compare them to the predictions of the strong-disorder

renormalization group. We conclude in Sec. 6.

2. THE MODEL

The starting point of our work is a quantum Landau-Ginzburg-Wilson (LGW) free

energy functional for an N-component vector order-parameter ϕ = (ϕ1, ..., ϕN ) in d space

dimensions (for the superconductor-metal transition in nanowires, d = 1 and N = 2). The

action can be derived from a Hamiltonian of disordered electrons by employing standard

techniques [16, 17, 18, 19]. In the absence of quenched disorder, the clean LGW action

reads [15, 20]

S =
∫

dydxϕ(x)Γ(x, y)ϕ(y) +
u

2N

∫
dxϕ4(x), (2)

where x ≡ (x, τ) is a vector that includes position x and imaginary time τ,
∫

dx ≡∫
dx

∫ 1/T
0 dτ, and u is the standard 4th-order coefficient. Γ(x, y) is the bare inverse propa-

gator (two-point vertex) whose Fourier transform reads

Γ(q, ω) = r + ξ2
0q

2 + γ0 |ω|
2/z0 . (3)
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Here, r is the distance from criticality, ξ0 is a microscopic length, ωn is the Matsubara

frequency, γ0 is the damping coefficient, and z0 = 2 for theOhmic order parameter dynamics

caused by the coupling to the conduction electrons.

To inspect the predictions of the strong-disorder renormalization group [15] by

means of a Monte Carlo method, we need to map the quantum action (Eq. 2) in d

space dimension onto a (d + 1)-dimensional classical XY model. This mapping can be

accomplished by discretizing space and imaginary time and interpreting imaginary time as

another space dimension. As a result, the classical XY Hamiltonian reads:

H = −
∑
i,τ

(J(s)i Si,τSi+1,τ + J(τ)i Si,τSi,τ+1) −
∑
i,τ,τ′

Kτ,τ′Si,τSi,τ′ . (4)

Here, Si,τ is the XY spin at position i in space and τ in imaginary time, and J(s)i and

J(τ)i are the ferromagnetic interactions between nearest neighbor spins in space and time

directions, respectively. Kτ,τ′ is the long-range interaction in time that reads

Kτ,τ′ = γ |τ − τ
′|−α, (5)

where γ is the interaction amplitude while α = 2 for Ohmic dissipation. We tune the

transition by varying the classical temperatureT , while keeping J(s)i , J(τ)i , and Kτ,τ′ constant.

Under this mapping, the actual temperature TQ of the quantum system maps on the

temporal system size Lτ of the XY model, the superfluid density maps onto the spin-wave

stiffness in space direction, and the compressibility maps onto the stiffness in imaginary

time direction.
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3. THEORY

3.1. RENORMALIZATIONGROUPPREDICTIONS. In this section, we briefly

summarize the results of a strong-disorder renormalization group [15] of the LGW field

theory (Eq. 2) with quenched disorder. Hoyos et al . found that Ohmic dissipation leads

to a quantum critical point of exotic infinite-randomness type that belongs to the random

transverse-field Ising chain universality class [21, 22]. Whereas the dynamical scaling of

the clean system is power-law scaling, the disordered system follows the unconventional

(activated) scaling.

The strong-disorder renormalization group [15, 22] makes the following predictions

for the finite-size scaling behavior of observables (see also Refs. [23, 24]). The order

parameter susceptibility χ at criticality is expected to depend on the system size Lτ in

imaginary time direction via

χ ∼ Lτ[ln(Lτ/b)]2φ−1/ψ, (6)

where φ = (1+
√

5)/2 and ψ = 1/2 are the critical exponents of the infinite-randomness crit-

ical point, b is arbitrary constant. In the ordered Griffiths phase (T < Tc), the susceptibility

diverges as

χ ∼ L1+1/z
τ , (7)

and in the disordered Griffiths phase (T > Tc), it behaves as

χ ∼ L1−1/z
τ . (8)

Here, z > 1 is the Griffiths dynamical exponent.
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The spin-wave stiffness ρs of the XY Hamiltonian describes the change in the free-

energy density f during a twist of the spins at two opposite boundaries by an angle θ. For

small θ and large system size l, the free-energy change reads

f (θ) − f (0) =
ρs

2
θ2

l2 . (9)

We can distinguish two kinds of stiffnesses, the space-stiffness ρ(s)s , and the time-

stiffness ρ(τ)s . To discuss the space-stiffness ρ(s)s (which corresponds to the superfluid density

of the quantum system), we implement the twist between 0 and L in space direction with

l = L in Eq. (9). The theory developd in Refs. [23, 25] implies anomalous behavior of

ρ
(s)
s : Because the distribution of the effective interactions J(s)e f f becomes very broad under

the renormalization group, the stiffness vanishes for L →∞ in part of the ordered Griffiths

phase betweenTc andT∗whereT∗ is the temperaturewhere theGriffiths dynamical exponent

z = 1. In this temperature range, it behaves as

ρ
(s)
s ∼ L1−z . (10)

Normal behavior with nonzero ρ(s)s in the thermodynamic limit is restored for T < T∗. In

contrast, the time-stiffness ρ(τ)s (which corresponds to the compressibility of the quantum

system) is nonzero everywhere in the ordered phase, and behaves as

ρ
(τ)
s ∼ |T − Tc |

β, (11)

where β is the exponent of the order parameter.
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4. MONTE CARLO SIMULATIONS

To confirm the predictions of the strong-disorder renormalization group given in

Sec. 3, we perform extensive Monte Carlo simulations of the (1+1)-dimensional XYHamil-

tonian (4) with long-range interactions in time direction.

By means of the Luijten algorithm [26], we simulate systems with linear size L = 20

to 160 in space direction and Lτ = 2 to 40000 in (imaginary) time direction. We introduce

quenched disorder only in the space direction, this implies that the disorder is perfectly

correlated in the imaginary time direction. Specifically, J(s)i and J(τ)i are random variables

derived from a binary probability distribution

ρ(J) = (1 − c)δ(J − Jl) + cδ(J − Jh). (12)

Here, Jh is the higher value of the interaction while the lower value is Jl . The concentrations

of Jh and Jl are c and (1 − c), respectively. In the simulations, we choose γ = 0.1,

c = 0.5, Jh=2 and Jl=0.5 as parameters. For each run we use 100 Monte Carlo sweeps for

equilibration and 200 sweeps for measurements. During these simulations, we measure the

energy, specific heat, magnetization, susceptibility, correlation function, correlation length,

space and time stiffnesses, and Binder cumulant. All observables are averaged over 1000

to 10 000 disorder configurations.

5. THERMODYNAMICS

5.1. CLEAN SYSTEM. To test our simulation method and to make contact with

the literature, we first study the clean case with uniform J(s)i = J(τ)i = 1. To estimate the

location of the critical point, we use the finite-size scaling method [27, 28]. The magnetic
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Binder cumulant g [29, 30] has a finite-size scaling form of

g(r, L, Lτ) = Υg(rL1/ν, Lτ/Lz). (13)

Here, r = (T − Tc)/Tc is the distance from the critical point, Υg is the scaling function, ν

is the correlation length exponent, and z is the dynamical exponent. The Binder cumulant

can be calculated from

g = 1 −
〈m4〉

3〈m2〉2
, (14)

where m is the magnetization (order parameter),

m =
1

LLτ

∑
i,τ

Si,τ . (15)

The long-range interactions breaks the symmetry between the space and time-like

directions. The value of z is therefore not known at the outset, and we need to perform

anisotropic finite-size scaling. We employ the iterative method outlined in Refs. [31, 32, 33,

34]: The Binder cumulant has a maximum as function of Lτ for fixed L. According to (13),

the peak position Lmax
τ must behave as Lz at criticality, and the value gmax of the maximum

must be L-independent. Fig. 1 shows the behavior of Binder cumulant g as a function of

Lτ for several system size L at the estimated critical temperature Tc = 0.56969(6). These

curves indeed have identical maximum values that are independent of the system size L

(because of corrections to scaling, some deviations occur at small L).

To test the scaling form of the Binder cumulant (13) and measure the dynamical

exponent z, we plot the data of the Binder cumulant as a function of Lτ/Lz and vary z until

a good collapse is achieved. As shown in Fig. 2, the data collapse onto each other in the

conventional power-law dynamical scaling form as expected [35, 36], yielding a dynamical

exponent z = 2.01(6).
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Fig. 1. Binder cumulant g vs. Lτ for different L at the critical temperature Tc = 0.56969.
The statistical error of g is much smaller than the symbol size.
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Fig. 2. Scaling plot of the Binder cumulant g as a function of Lτ/Lz for different L at
Tc = 0.56969. All curves collapse and follow the power-law scaling for z = 2.01.

To compute further critical exponents of the system, we analyze the properties of

magnetization and susceptibility at the critical point, aswell as the slope dg/dT of theBinder

cumulant. Correlation length exponent ν can be estimated from slopes of Binder cumulant.

Taking the derivative with respect to temperature in (13), it follows that dg/dT at criticality
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(r = 0) behaves as L1/ν (if evaluated for the optimal sample shapes Lτ = Lmax
τ ∼ Lz). In

Fig. 3 we plot these slopes as a function of system size L, then we determine the critical

exponent ν = 0.687(9) from a power-law fit to dg/dT ∼ L1/ν.

We study the scaling behavior of magnetization and susceptibility at criticality. We

find that these observables follow power-law scaling, m ∼ L−β/ν and χ ∼ Lγ/ν as expected

[27]. We estimate the critical exponents to be β/ν = 0.507(5) and γ/ν = 2.03(4) (see

Fig. 3).

Moreover, we test the hyper scaling relation [37]

2β
ν
+
γ

ν
= d + z. (16)

We find that our results fulfill the hyper scaling behavior. All clean exponents agree with

those found in Ref. [36] within their errorbars.

Note that the correlation length exponent ν = 0.687 violates the Harris criterion

dν > 2 [38], implying that the clean critical behavior will be unstable against disorder.
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Fig. 3. Left: Double logarithmic plot of susceptibility χ and slope of Binder cumulant
dg/dT vs. system size L for optimally shaped samples at criticality. The solid lines are fits
to the predicted power laws χ ∼ Lγ/ν and dg/dT ∼ L1/ν with γ/ν = 2.03 and 1/ν = 1.454.
Right: Magnetization m as a function of L at criticality. The slope of the fitted line with
m ∼ L−β/ν gives β/ν = 0.507.
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5.2. DISORDERED SYSTEM. After studying and analyzing the behavior of the

pure critical point, we now apply quenched disorder to the Hamiltonian (4) by making

the ferromagnetic interactions J(s)i and J(τ)i random variables with the distribution (12).

We have attempted to use the same Binder-cumulant-based finite-size scaling method as

in the clean case to find the critical point. Unfortunately, this analysis is hampered by

strong corrections to scaling. We have therefore turned to analyzing the dependence of

order parameter susceptibility on Lτ (see Eqs. 6, 7 and 8), in analogy to Ref. [24] where

similar difficulties were encountered. To test Eqs. (7) and (8), one needs to take samples

having effectively infinite size L (L � Lτ). We have performed simulations with system

size L = 1000 and Lτ = 10 to 224. Fig. 4 confirms that the behavior of χ versus Lτ for

different temperatures in the Griffiths region agrees with the finite-size power laws (7) and

(8) predicted by theory.

To find Tc we employ the behavior of Eqs. (7) and (8) and extract the values of the

dynamical exponent z for the ferromagnetic and paramagnetic sides of the Griffiths region.

The exponent z is predicted to diverge at the critical point as

10 10030 60 200
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100

1000

30

400

           T
 0.50
 0.51
 0.52
 0.53
 0.54
 0.55
 0.56
 0.58
 Fit

c

Lt

Fig. 4. Susceptibility χ as a function of Lτ for various temperatures in the Griffiths phase.
The size in space direction is L = 1000. The solid lines are fits to the power laws (7) and
(8).
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z ∼
1

|T − Tc |
. (17)

Fig. 5 shows the values of z in the ordered and disordered Griffiths phase as a

function of temperature T . These values are fitted to the power law relation (17) giving an

estimated critical temperature of Tc ≈ 0.5398(91).

In addition to the order parameter susceptibility, we also investigate the superfluid

density and the compressibility of the quantum system. They are represented by the spin-

wave stiffness in the space and time directions, respectively.

The spatial stiffness can be computed using the relation [39]

ρ
(s)
s =

1
N

∑
i, j,τ,τ′

Ji, j,τ,τ′〈 ®Si,τ · ®Sj,τ′〉(i − j)2

−
1

NT

〈( ∑
i, j,τ,τ′

Ji, j,τ,τ′K̂ · ( ®Si,τ × ®Sj,τ′)(i − j)
)2〉

,

(18)
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Fig. 5. Dynamical exponent z as a function of classical temperature T in Griffiths regions.
The data are extracted from the susceptibility data in Fig. 4. The solid lines are fits of z to
Eq. (17).
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where

Ji, j,τ,τ′ =



J(s)i if j = i ± 1 , τ = τ′

J(τ)i if i = j , τ = τ′ ± 1 ,

γ |τ − τ′|−α if i = j , τ , τ′,

0 otherwise

N = LLτ is the total number of sites, and K̂ is the unit vector perpendicular to the (i, τ)-plane.

For the calculation of ρ(τ)s , the term (i − j) has to replaced by (τ − τ′).

The behavior of the spin-wave stiffnesses is illustrated in Fig. 6. It shows the results

for the space and time stiffness of a system of size L = 160 and Lτ = 10000. Clearly, the two

stiffness behave differently. According to Eq. 11, the time stiffness is expected to behave as

|T − Tc |
β. Despite significant finite-size rounding, our data are qualitative compatible with

this prediction, giving Tc ≈ 0.54, in agreement with our earlier estimate of Tc ≈ 0.5398. In

contrast, the space-stiffness ρ(s)s vanishes at a lower temperature T ≈ 0.503, giving rise to

anomalous elasticity [25] for temperatures between Tc and T∗.
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Fig. 6. Spin-wave stiffness in space ρ(s)s and time ρ(τ)s as function of the classical temperature
T with system size L = 160 and Lτ = 10000. The data for ρ(s)s are rescaled by 500 for
clarity.
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In addition, we compute the correlation function G in the space and time directions

to determine the correlation length ξ, and then estimate the correlation exponent ν. The

correlation functions in space and time directions are defined as

G(x) =
1
N

∑
i, j,τ

〈 ®Si,τ · ®Sj,τ〉δ(x − |i − j |), (19)

G(τ) =
1
N

∑
i,τ1,τ2

〈 ®Si,τ1 ·
®Si,τ2〉δ(τ − |τ1 − τ2 |). (20)

Fig. 7 shows the spatial correlation function (19) for different temperatures in the

Griffiths region for system of sizes L = 80 and Lτ = 1200.

The strong-disorder renormalization group [22] predicts that the correlation function

in space direction x behaves as

G(x) ∼
exp[−(x/ξ) − (27π2/4)1/3(x/ξ)1/3]

(x/ξ)5/6
. (21)

The values of ξ can be extracted by fitting the data of G(x) to Eq. (21) for distances between

x = 3 and some cutoff at wich the curves start to become noisy. The inset of Fig. 7 shows

the relation between the correlation length ξ and the distance from criticality δ = |T − Tc |

which reads [22]

ξ ∼ |δ |−ν . (22)

As expected, the data can be fitted to the power law (22), giving a correlation length exponent

of ν = 1.8(3), in reasonable agreement with the renormalization group result ν = 2 [22].
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Fig. 7. Space-correlation function G(x) for several temperature in Griffiths phase. The
solid lines are fits to Eq. (21). Inset: The space-correlation length ξ obtained by analyzing
space-correlation function as a function of distance δ from critical temperature. The solid
line is a fit of Eq. (22).

We also analyze the correlation time that we compute from the Fourier transform

G̃(q) of the correlation function:

ξ =

[
G̃(0) − G̃(qmin)

q2
minG̃(qmin)

]1/2

. (23)

Here, qmin is the minimum wave number, 2π/Lτ in time direction.

We analyze the behavior of the correlation time ξτ in the Griffiths phase by plotting

ξτ/Lτ as a function of temperature T for several system of size Lτ, as shown in Fig. 8.

Clearly, the different curves cross at temperature T ≈ 0.5775, much higher than our critical

temperature Tc ≈ 0.5398. This indicates that the correlation time ξτ diverges in part of the

disordered phase. This behavior can be understood by finding the rare region contribution
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Fig. 8. Scaled correlation time ξτ/Lτ versus temperature T for different values of Lτ in
the Griffiths region. The system size in space is L = 1000; the data are averaged over
2000 disorder configurations. The inset shows a magnification for the crossing point of the
curves.

to the correlation time ξτ. It can be estimated from [24]

ξτ ∼

∫ ε0

0
dε ε1/z−1 1

ε
, (24)

where ε is the renormalized distance from criticality of rare region. According to Eq. (24),

the integral diverges for z > 1 and converges for z < 1. Therefore, the correlation time

diverges in the disordered Griffiths phase at the temperature at which the Griffiths dynamical

exponent is z = 1. We estimate this temperature in Fig. 8 to be T ≈ 0.5775. This value is

in a good agreement with our results in Fig. 5.

6. CONCLUSIONS

In summary, we have studied the superconductor to metal quantum phase transition

in ultra thin nanowires by performing large-scale Monte Carlo simulations. To this end, we

have mapped the quantum action onto a (1+1)-dimensional classical XY Hamiltonian with

long-rang interactions.
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For clean systems, we have employed finite-size scaling of the Binder cumulant

to estimate the critical point and determine the universality class of the phase transition.

Our results agree well with earlier Monte-Carlo simulations [36] as well as perturbative

renormalization group results [35, 40].

In the presence of quenched disorder, our results provide strong evidence in support

of the infinite-randomness behavior that was predicted by the strong-disorder renormaliza-

tion group approach [15] and the large-N analyses [9]. The critical behavior is in the same

universality class as the random transverse-field Ising chain. This may appear surprising at

first glance because the random transverse-field Ising model has discrete symmetry and no

dissipation while our current problem has continuous XY symmetry and Ohmic dissipation.

However, the behavior agrees with the general classification of disordered quantum phase

transitions developed in Refs. [41, 42, 43]. In both systems, the rare regions are right at the

lower critical dimension of the problem, putting the transitions into class B [43]. Moreover,

both clean transitions violate the Harris criterion, implying that the dirty transitions are in

subclass B2 which features infinite-randomness criticality [43].

Rare regions also lead to unusual properties in the ordered (superconducting) Grif-

fiths phase. Specifically, the superfluid density vanishes in part of the ordered Griffiths

phase while the compressibility is already nonzero. In this regime, the system displays

anomalous elasticity [25].

Our Monte-Carl simulation can be generalized to compute further observables in-

cluding the dynamical conductivity in the regime ω � T . This remains a task for the

future.
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SECTION

2. CONCLUSIONS AND OUTLOOK

This dissertation is an attempt to understand and interpret the effects of randomness

on the behavior of several kinds of phase transitions (thermal, quantum and nonequilibrium)

by employing large-scale Monte-Carlo simulations.

The first section introduced general and basic concepts of thermal, quantum and

nonequilibrium phase transitions as well as critical behavior including order parameters,

the scaling hypothesis, and finite-size scaling. Moreover, we explained the stability of phase

transitions against disorder based on the Imry-Ma and Harris criteria. In addition, we also

introduced the strong-disorder renormalization group which is an important technique to

investigate disordered phase transitions. Finally, we gave an explanation of rare-region and

Griffiths effects on phase transitions and criticality.

The rest of this dissertation consisted of reprints of three published refereed papers

and one manuscript. In Paper I, we studied the effects of long-range correlated spatial

disorder on the nonequilibrium phase transition in the contact process. These long-range

correlations increase the probability for finding rare active regions which leads to enhanced

Griffiths singularities with non-power-law Griffiths behavior. Our theory is also applicable

to classical and quantum equilibrium systems such as the quantum phase transition in

random transverse-field Ising model.

In Paper II, the two-dimensional four-color Ashkin-Teller model was investigated

by Monte Carlo simulations to analyze the effects of quenched disorder on its first-order

phase transitions. The randomness destroys the first-order phase transition and turns it into

a continuous one. We found that the emerging critical behavior of the disordered Ashkin-
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Teller model is compatible with the critical behavior in the clean two-dimensional Ising

universality class with universal logarithmic corrections. This concurs with perturbative

renormalization-group predictions.

Paper III studied the influence of quenched disorder on the quantum phase tran-

sitions in the two-dimensional three-color quantum Ashkin-Teller model by Monte Carlo

simulations. We have found that in the weak-coupling regime the quenched disorder rounds

the first-order quantum phase transition to a second-order one which features infinite-

randomness critical behavior. This agrees with the predictions of a strong-disorder renor-

malization group analysis. However, in the strong-coupling regime there are two distinct

quantum phase transitions separating the paramagnetic, product and Baxter (ferromagnetic)

phases.

In Paper IV, we investigated the superconductor to metal quantum phase transition

in ultra-thin metallic nanowires by employing large-scale Monte Carlo simulations. We

studied the critical behavior of pure and disordered systems. The results of the disordered

case provide strong evidence in support of infinite-randomness critical behavior and agree

with strong-disorder renormalization group predictions.

In summary, we have explained howquenched disorder can change andmodify phase

transitions and the critical behavior in different systems (classical and quantum equilibrium

as well as nonequilibrium). This gave us an opportunity to understand more deeply the

interplay between such impurities (randomness) and phase transitions. Most of this work

focuses on the thermodynamic behavior. However, our methods can also be applied to study

real-time dynamics and transport properties. This remains a task for the future.
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