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ABSTRACT

This thesis focuses on the effects of both correlated and non-correlated disorder

on non-equilibrium phase transitions, specifically those found in the d-dimensional

contact process. These effects are studied by means of extensive Monte-Carlo simu-

lations. The scaling behavior of various parameters is evaluated for both cases, and

the results are compared with theory. For the correlated disorder case, the stationary

density in the vicinity of the transition is also examined, and found to be smeared.

The behavior in both cases can be understood as the results of rare regions

where the system is locally free of disorder. For point-like defects, i.e., uncorrelated

disorder, the rare regions are of finite size and cannot undergo a true phase transition.

Instead, they fluctuate slowly which gives rise to Griffiths effects. In contrast, if the

rare regions are infinite in at least one dimension, a stronger effect occurs: each rare

region can independently undergo the phase transition and develop a nonzero steady

state density. This leads to a smearing of the global transition.
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1. INTRODUCTION

In nature, thermal equilibrium is more of an exception than the rule. Non-

equilibrium systems dominate our daily lives, from weather patterns to chemical re-

actions to the spreading of disease. While many aspects of nonequilibrium systems

are unusual and different from equilibrium systems, there are some properties that

are shared between the two cases, such as phase transitions. In recent years, phase

transitions between different nonequilibrium states have become a topic of great in-

terest. A prominent class of nonequilibrium phase transitions separates active fluctu-

ating states from inactive absorbing states where fluctuations cease entirely[1]. These

absorbing state transitions have applications ranging from physics to chemistry to

biology[1, 2, 3, 4]. The generic universality class for absorbing state transitions is

directed percolation[5].

A prototypical member of the directed percolation universality class is the con-

tact process[1, 6]. To provide a biological model, imagine a forest of elm trees, some

of which are infected with Dutch elm disease. The infection spreads to nearby trees

with the rate λ and is healed at unit rate. It is intuitively clear that for a low enough

infection rate the infection will die out, and likewise, for a high enough rate there will

be a nonequilibrium steady state density of infected trees. Mathematically speaking,

the contact process consists of a d-dimensional hypercubic lattice. Each site can be

vacant or occupied. During the time evolution, particles duplicate themselves and

spread to their nearest neighbors at rate λ, and are annihilated at unit rate. For

small λ, annihilation dominates and the absorbing state with no occupied sites is

the only steady state. For large λ there is a steady state with finite particle density

(active phase). The two phases are separated by a nonequilibrium phase transition

at λ = λ0
c . Section 1.1 will discuss these concepts in deeper detail.
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In a realistic system, the spreading and recovery rates will not be constant, but

will vary from site to site. For the biological model, this can be interpreted in many

ways: geographical factors making neighbors less likely to become infected, a locally

less virulent strain of the disease, etc. From analogy to similar equilibrium phase

transitions[7], one would initially expect that the sharp phase transition survives with

only a shift in the value of λc. However, Thomas Vojta[8] has shown that this belief

is in general not true. He developed a theory which predicts that disorder correlated

in a sufficient number of dimensions can destroy a sharp continuous phase transition

and smear it over a parameter interval. The system divides itself into separate regions

which essentially act as independent and can become active at different values of the

control parameter λ. The biological analogy would be a forest separated by cliffs,

valleys, and mountain ranges. Unlike conventional phase transitions where the entire

system is either in its ordered or in its disordered phase, strongly correlated impurities

make different parts of the system undergo the phase transition independently of

each other. The phase transition is therefore smeared and the order develops very

inhomogeneously. A more in depth discussion of these phenomena can be found in

Section 1.2.

In contrast, for pointlike disorder, different parts of the system cannot undergo

the phase transition independently. Therefore the transition is predicted to be sharp,

but with logarithmically slow time dynamics.

The goal of this thesis is to analyze the results of large-scale Monte-Carlo sim-

ulations of the contact process with both correlated and non-correlated disorder in

order to test these predictions. Section 2 discusses simulations of a two-dimensional

contact process model with linear defects (correlated disorder) and short-range inter-

actions. The system consists of a 2d square lattice with as many as several million

sites, each of which can be occupied or empty. The correlated disorder is simulated

by introducing parallel lines of weak duplication rate, i.e., lines with λ(~r) = cλ, where
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c < 1. The results of the simulations show that the phase transition is indeed de-

stroyed and smeared over a range of λ. Order develops very inhomogeneously, i.e.,

the rare regions devoid of impurities become active first, while the bulk system is still

in the inactive phase. As λ is lowered more of these rare regions become active and

eventually the system becomes completely active. Unlike in the case of a continu-

ous phase transition, in our case activity develops independently on different parts

of the system. The dynamics close to the smeared transition is very slow, showing

stretched-exponential or even power-law time-dependent decay of the density. The

numerical results are in good agreement with the initial predictions[8].

In Section 3, the effects of non-correlated, or pointlike, disorder are examined.

A sharp phase transition is found, in agreement with predictions. While previous

research[9] had shown non-universal behavior, this thesis shows that for long enough

time scales, the system possesses universal behavior just as expected at a critical

point, but with exponential scaling, rather than the usual power-law scaling. In

order to explore these very long time scales, it was necessary to switch to a 1d lattice,

however the results can be extended to higher dimensions.

Finally, in Section 4, these results and simulations will be summarized and

brought to a conclusion.

1.1. THE CONTACT PROCESS

As mentioned above, the system of interest to this thesis is the contact process[1,

6]. The specific implementation of the contact process used here involved a d-

dimensional hypercubic lattice. At any given point in time each site is associated

with either a 0, representing an unoccupied site, or a 1, representing an occupied site.

The system is allowed to evolve in time by picking a single occupied site at random,

and selecting either creation, at probability λ/(λ + 1) or annihilation at probability

1/(λ + 1), where λ is a nonnegative parameter. If creation is selected, one of the
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2N nearest neighbors is selected at random. If it is unoccupied, its value is set to 1.

If annihilation is selected, the chosen site’s value is set to 0. In either case, time is

advanced by 1/Np, where Np is the total number of infected individuals. While the

original contact process is a process in continuous time, in order to implement the

Monte Carlo simulation, it is necessary to discretize the process. This method was

initially proposed by Dickman[10].

This system has many notable features. Of interest to this investigation is the

fact that it possesses a non-equilibrium transition between an active and an absorbing

state, as well as its similarities and connections to Directed Percolation.

1.1.1. Absorbing States The absorbing state transition discussed in the intro-

ductory paragraph is difficult to explain quantitatively, but fairly trivial to explain

in a qualitative manor. Consider the 2d contact process again. Since the growth rate

is proportional to the number of occupied nearest neighbors, it is clear that if the

system ever enters into a state where no sites are occupied, the growth rate will then

be zero for all sites, and the system will never leave the empty inactive state. Such a

state, that can be entered but never left, is referred to as an ”absorbing state”. As

was mentioned before, for values of λ small compared to the annihilation rate, one

expects the system to enter the absorbing state in the long time limit. The biological

analogy would say that an insufficiently virulent disease will eventually die out. On

the other hand, for values of λ large compared to the annihilation rate, one of course

expects occupied sites to survive. Much like the flu, a virulent disease is generally

suffered by some relatively constant fraction of the population. Thus there is an ac-

tive steady state for high λ, and an absorbing steady state for low λ. This suggests

that there may be a phase transition between these two states as λ is varied.

1.1.2. Non-Equilibrium Phase Transitions It must be emphasized that all the

steady states discussed above are non-equilibrium states that cannot be characterized

by a Boltzmann distribution e−βE. In fact, the contact process does not even allow
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the notion of energy. Thus all the traditional, thermodynamic, methods of analyzing

phase transitions will not work. Luckily, though non-equilibrium phase transitions

arise out of a fundamentally different class of states, they still share many of the

same characteristics of continuous equilibrium phase transitions[1]. Both types of

phase transitions are associated with a control parameter λ crossing a critical value

λc. In addition, behavior near critical points can be described according to power law

scaling of the form

Xn = |λ− λc|n (1.1)

where Xn is an observable specific to the system, (heat capacity for thermodynamic

phase transitions, magnetization for magnetic models), and n is a universal critical

exponent associated with that particular observable. Many quantities have expres-

sions of this form, with only the value of n changing. These are universal exponents

in that they do not vary based on the microscopic details of the system, but only

macroscopic qualities such as the dimensionality of the system, and any symmetries

it might have. Those details define universality classes, which are groups of systems

that share the same critical exponents.

1.1.3. Connections to Directed Percolation It has been previously asserted that

the contact process is a member of the directed percolation universality class[1, 6]. In

order to show that this is the case, it is easiest to consider a geometrical or graphical

representation. In Figure 1.1, an example of the 2d directed percolation problem can

be seen. Bonds are formed randomly along the lattice paths with some probability

λ, and directed percolation is achieved if a path can be achieved from the bottom

to the top without ever going downward. If the up-down direction is interpreted as

a temporal dimension, rather than a spatial dimension, and bonds are considered

to represent particle duplication or site infection; it is easily seen that the survival

probability of a contact process is analogous to the probability of a path forming
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Percolation Directed Percolation

Figure 1.1. Illustration of Percolation and Directed Percolation. Percolation is
achieved if an unbroken line is formed from bottom to top. In Directed
percolation, only paths that advance along the direction of the arrows are
considered.

for the directed percolation problem. As such, they will have exactly the critical

exponents, and as such, belong to the same universality class. Table 1.1 lists values

of the critical exponents for the directed percolation universality class. β is the critical

exponent associated with the steady state density ρ , which is the long time limit of

the proportion of occupied sites, with defining equation

ρ = (λ− λc)
β. (1.2)

ν⊥ and ν‖ are the exponents of the correlation lengths in the space and time dimen-

sions respectively, and are associated with the typical size of a cluster in the respective



7

Table 1.1. Critical exponents and associated quantities for d-dimensional directed
percolation[1]

Critical Exponent d=1 d=2 d=3
β 0.276486 0.584 0.81
ν⊥ 1.096854 0.734 0.581
ν‖ 1.733847 1.295 1.105
z 1.580745 1.76 1.90
δ 0.159464 0.451 0.73
θ 0.313686 0.230 0.12

dimensions. The relevant equations are

ξ⊥ = (λ− λc)
ν⊥ ,

ξ‖ = (λ− λc)
ν‖ .

(1.3)

z is the ratio between ν⊥ and ν‖, and leads to the equation

ξt = ξz. (1.4)

Lastly δ describes the survival probability at the critical point λ = λc of a cluster

starting from a single site, as well as the time evolution of the density starting from a

full lattice. θ is associated with number of sites in a cluster that started from a single

site. These time dependent equations are of the form

Ps(t) = t−δ,

ρ(t) = t−δ,

N(t) = tθ.

(1.5)
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1.2. DISORDER EFFECTS

The results discussed in the previous section assume that the control parameter

associated with the system is spatially homogenous, with no changes in its value as

one moves from point to point within the system. However in the real world such

ideal conditions are often impossible to realize[11]. Thus the question arises of what

happens when some form of disorder is introduced into the system. Three questions

that immediately arise about the behavior of the phase transition are are: 1) Does

the phase transition remain sharp? 2) If so, does it have the same critical behavior as

the clean transition, or do the critical exponents or even the character of the scaling

relations change? And 3) Is the behavior still universal?

Quenched, i.e. time-independent, disorder is perhaps the most common type,

and is the easiest to realize. The effects of quenched disorder on directed percolation

have been examined before, by several researchers, and the results were very inconclu-

sive. Renormalization group analysis, a common technique to analyze critical point

behavior, showed only runaway solutions towards large disorder[12], indicating un-

usual behavior. In addition, simulations produced results that indicated the critical

exponents were non-universal[13, 14, 15, 16], with no explanation as to why. To find

answers to the above questions is very important, and the Harris criterion can provide

a partial answer to the first two.

1.2.1. Harris Criterion The Harris Criterion[13, 17] is a general rule relating

the critical exponent of the spatial correlation length ν⊥ to the effects of quenched

disorder on critical points. It states that if the correlation length critical exponent

of the clean transition fulfills the inequality ν⊥ ≥ 2/d where d is the spatial dimen-

sionality, then the disorder does not affect the behavior of the system at the critical

point, and the same power law behavior with the same exponents will occur, though
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with a shift in the non-universal value of λc. Table 1.1 illustrates that the relevant

quantity, ν⊥, violates the Harris criterion for all listed d. When the Harris criterion is

violated, generally, the result is a new critical point with the same sort of power law

scaling discussed in Section 1.1.2, but with new exponents which allow it to fulfill the

Harris criterion. In some rare cases, however, other, more interesting behavior can be

observed; this behavior depends on how the disorder changes at large length scales.

Two general classes can be defined if the Harris criterion is violated, but a sharp

transition still exists[18]. In the first class[19, 20], the disorder remains noticeable

at all length scales, with the relative strength of the disorder approaches some finite

value as the length scale increases arbitrarily. In this case, the generic result occurs as

discussed above, the system retains power-law scaling with new exponents that allow

it to fulfill the Harris criterion. In the second class however, disorder effects increase

without limit on large length scales[21]. The conventional power law scaling is lost,

and is replaced by activated, i.e. exponential, scaling. In addition, the probability

distributions of macroscopic quantities become very broad even on a logarithmic

scale, with their width diverging with increasing system size. Consequently, events

which would normally be exponentially rare can come to dominate average behavior.

In the renormalization group formulation, these critical points with infinite disorder

are referred to as infinite-randomness critical points, and their general behavior is

discussed below in brief. Realization of these points is shown in Section 3.

1.2.2. Griffiths Effects While the previous sections have only considered the

global nature of the disorder, Griffiths phenomena depend on the local effects of rare

strong spatial disorder fluctuations. These fluctuations can affect not only the critical

point itself, but the vicinity around it. In the region between λc, the dirty critical

point, and λ0
c , the clean critical point, the bulk system is in the absorbing phase.

However, in an infinite sized sample, there is an exponentially small, but nonzero

probability for finding an arbitrarily large spatial region devoid of impurities. These
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rare regions, known as Griffiths islands, can be locally active while the rest of the sys-

tem is in the absorbing phase. The dynamics associated with these Griffiths islands

are very slow, because changing state requires a coherent change of the order para-

meter over this arbitrarily large region. The presence of these locally active islands

produces an essential singularity in many observables in the region between λc and

λ0
c [22], which is often called the Griffiths phase. While in generic classical equilibrium

systems, this behavior has not been observed, due to weakness of these effects, in

quantum systems, or classical systems with correlated disorder, the Griffiths effects

become strong enough to be observed in experiments[21]. In some such systems, the

Griffiths effects can become strong enough to destroy the phase transition entirely,

which is known as smearing[23], and will be discussed in the next paragraph.

1.2.3. Disorder Induced Smearing Previously, it has been assumed that the

phase transition remains sharp in the presence of quenched disorder. It can be shown

however, that in some systems the rare region effects can become so strong that the

phase transition is completely destroyed by smearing. Consider a single rare region

that is locally in the active phase. In the generic case of uncorrelated disorder this

region is of finite extension. Therefore it cannot undergo a true phase transition

independently of the bulk system. The slow fluctuations of this rare region thus lead

to the Griffiths effects[22] discussed in Section 1.2.2. However, the reliance of this

effect on the fluctuation of the phase of the rare regions suggest that if these regions

are capable of undergoing true phase transitions then the behavior of the system as a

whole could completely change. Recent work has shown that this sort of local phase

transition does indeed occur in disordered quantum systems[23] or classical systems

with correlated disorder[24]. This changes the behavior of the system, leading to a

smeared global phase transition.

These smeared transitions exhibit notably different behavior from a conventional

sharp transition. At a conventional transition, the ordered phase develops as a global
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feature of the entire system. This transition is signified by a diverging correlation

length of the order parameter fluctuations at the critical point, and by singulari-

ties in the accompanying observables. In contrast, in these smeared transitions, the

system divides itself up into spatial regions which independently undergo the phase

transition at different values of the control parameter. Global order thus develops

very irregularly over a range of control parameter values. The correlation length re-

mains finite, the singularities of observables are rounded, and the sharp transition is

destroyed.

In the contact process with extended quenched defects, rare regions are infinite

in the correlated dimensions, but finite in the random directions. Since the contact

process displays a phase transition already in one dimension, the phase transition in

this system can happen independently on these rare regions, as such, we expect to see

a smeared transition in this system. Computational verification of this is provided in

Section 2.

In contrast, for point-like defects, these rare regions are not infinite in any

direction, and thus an active phase cannot develop independently on them. In this

case the transition remains sharp, and one of the aforementioned infinite randomness

fixed points arises, which leads to activated scaling of the form ξ‖ ∼ exp(ξµ
⊥). However,

contrary to previous predictions[9], this is indeed universal behavior in the long time

limit. Computational verification of this is provided in Section 3.
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2. MONTE-CARLO SIMULATIONS OF THE SMEARED PHASE

TRANSITION IN A CONTACT PROCESS WITH EXTENDED

DEFECTS 1

Mark Dickison and Thomas Vojta

Department of Physics, University of Missouri - Rolla, Rolla, MO 65409, USA

2.1. ABSTRACT

We study the nonequilibrium phase transition in a contact process with extended

quenched defects by means of Monte-Carlo simulations. We find that the spatial

disorder correlations dramatically increase the effects of the impurities. As a result,

the sharp phase transition is completely destroyed by smearing. This is caused by

effects similar to but stronger than the usual Griffiths phenomena, viz., rare strongly

coupled spatial regions can undergo the phase transition independently from the bulk

system. We determine both the stationary density in the vicinity of the smeared

transition and its time evolution, and we compare the simulation results to a recent

theory based on extremal statistics.

2.2. INTRODUCTION

Rare regions are an important, if intricate, aspect of systems with impurities and

defects. In recent years, their influence on phase transitions and critical phenomena

has reattracted considerable attention. Rare region effects were first studied in the

context of classical equilibrium phase transitions. Griffiths [22] showed that they lead

to a singular free energy in an entire parameter region in the vicinity of the phase

transition, now known as the Griffiths region. However, in classical systems with

1THE TEXT OF THIS SECTION HAS BEEN PUBLISHED AS A RESEARCH PAPER IN
2005 JOUR. PHYS. A 38 1199
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uncorrelated disorder, this Griffiths singularity in the free energy is an essential one

and thus very weak and probably unobservable in experiment. Disorder correlations

generically increase the effects of impurities. Therefore, stronger rare region effects

have been found in classical systems with extended defects and in random quantum

systems (where the correlations are in imaginary time direction). In the random

transverse field Ising model [25], or equivalently, the classical McCoy-Wu model [26],

the Griffiths singularity takes a power law form, accompanied by a diverging magnetic

susceptibility in the Griffiths region. Very recently, it has been found that some phase

transitions can even be completely destroyed by smearing when the rare regions order

independently from the bulk system. This happens, e.g., in a classical Ising magnet

with planar defects [27] and in itinerant quantum ferromagnets [23].

In this paper, we investigate the effects of rare regions on nonequilibrium phase

transitions with quenched spatial disorder. We concentrate on the prominent class

of absorbing state phase transitions which separate active, fluctuating states from

inactive, absorbing states where fluctuations cease entirely [2, 3, 1, 4]. The generic

universality class for absorbing state transitions is directed percolation (DP) [5]. Ac-

cording to a conjecture by Janssen and Grassberger [28], all absorbing state transitions

with a scalar order parameter, short-range interactions, and no extra symmetries or

conservation laws belong to this class. Examples include the transitions in the contact

process [29], catalytic reactions [30], interface growth [31], or turbulence [32].

The effects of uncorrelated spatial disorder, i.e., point-like defects, on the DP

transition have been studied in some detail in the past. According to the Harris

criterion [17, 13], the DP universality class is unstable against spatial disorder, because

the (spatial) correlation length exponent ν⊥ violates the inequality ν⊥ > 2/d for all

spatial dimensionalities d < 4. Indeed, in the corresponding field theory, spatial

disorder leads to runaway flow of the renormalization group (RG) equations [12],

destroying the DP behavior. Several other studies [15, 14, 33, 16] agreed on the
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instability of DP against spatial disorder, but a consistent picture has been slow

to evolve. Recently, Hooyberghs et al. applied the Hamiltonian formalism [34] to

the contact process with spatial disorder [9]. Using a version of the Ma-Dasgupta-

Hu strong-disorder RG [35] these authors showed that the transition (at least for

sufficiently strong disorder) is controlled by an exotic infinite-randomness fixed point

with activated rather than the usual power-law scaling.

Very recently, it has been suggested [8] that extended spatial defects like dislo-

cations, disordered layers, or grain boundaries can have an even more dramatic effect

on nonequilibrium phase transitions in the DP universality class. Rare region effects

similar to but stronger than the usual Griffiths phenomena [22, 13] actually destroy

the sharp transition by smearing. This happens because rare strongly coupled spa-

tial regions can undergo the transition independently from the bulk system. Based

on an extremal statistics approach it has been predicted [8] that the spatial density

distribution in the tail of the smeared transition is very inhomogeneous, with the

average stationary density and the survival probability depending exponentially on

the control parameter.

In the present paper we present results of extensive Monte-Carlo simulations of

a two-dimensional contact process with linear spatial defects which provide numerical

evidence for this smearing scenario in a realistic model with short-range couplings.

The paper is organized as follows. In section 2.3., we introduce the model and briefly

summarize the results of the extremal statistics theory for the smeared phase tran-

sition. In section 2.4. we present our simulation method and the numerical results

together with a comparison to the theoretical predictions. We conclude in section

2.5. by discussing the importance of our results and their generality.
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2.3. THEORY

2.3.1. Contact process with extended impurities

The contact process [29] is a prototypical system in the directed percolation

universality class. It can be interpreted, e.g., as a model for the spreading of a disease.

The contact process is defined on a d-dimensional hypercubic lattice. Each lattice

site r can be active (occupied by a particle) or inactive (empty). During the time

evolution, active sites can infect their neighbors or they can spontaneously become

inactive. Specifically, particles are created at empty sites at a rate λn/(2d) where

n is the number of active nearest neighbor sites and the ‘birth rate’ λ is the control

parameter. Particles are annihilated at unit rate. For small birth rate λ, annihilation

dominates, and the absorbing state without any particles is the only steady state

(inactive phase). For large birth rate λ, there is a steady state with finite particle

density (active phase). The two phases are separated by a nonequilibrium phase

transition in the DP universality class at λ = λ0
c .

Quenched spatial disorder can be introduced by making the birth rate λ a ran-

dom function of the lattice site. Point-like defects are described by spatially uncor-

related disorder. We are interested in the case of extended defects which can be

described by disorder perfectly correlated in dc dimensions, but uncorrelated in the

remaining dr = d − dc dimensions. Here dc = 1 and 2 corresponds to linear and

planar defects, respectively. Thus, λ is a function of rr which is the projection of the

position vector r on the uncorrelated directions. For definiteness, we assume that the

birthrate values λ(rr) are drawn from a binary probability distribution

P [λ(rr)] = (1− p) δ[λ(rr)− λ] + p δ[λ(rr)− cλ] (2.1)
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where p and c are constants between 0 and 1. In other words, there are extended

impurities of spatial density p where the birth rate λ is reduced by a factor c.

2.3.2. Smeared phase transition

In this subsection, we briefly summarize the arguments leading to the smearing

of the phase transition and the predictions of the extremal statistics theory [8] to the

extent necessary for the comparison with the Monte-Carlo results.

In analogy to the Griffiths phenomena [22, 13], there is a small but finite prob-

ability w for finding a large spatial region of linear size Lr (in the uncorrelated direc-

tions) devoid of impurities. Up to pre-exponential factors, this probability is given

by

w ∼ exp(−p̃Ldr
r ) (2.2)

with p̃ = − ln(1 − p). These rare regions can be locally in the active phase, even if

the bulk system is still in the inactive phase. Since the impurities in our system are

extended, each rare region is infinite in dc dimensions but finite in the remaining dr

dimensions. This is a crucial difference to systems with uncorrelated disorder, where

the rare regions are finite. In our system, each rare region can therefore undergo a

true phase transition independently of the rest of the system at some λc(Lr) > λ0
c .

According to finite-size scaling [36],

λc(Lr)− λ0
c = AL−φ

r , (2.3)

where φ is the clean (d-dimensional) finite-size scaling shift exponent and A is the

amplitude for the crossover from a d-dimensional bulk system to a ‘slab’ infinite in dc

dimensions but but finite in dr dimensions. If the total dimensionality d = dc+dr < 4,

hyperscaling is valid, and φ = 1/ν⊥ which we assume from now on.

The resulting global phase transition is very different from a conventional con-

tinuous phase transition, where a nonzero order parameter develops as a collective
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effect of the entire system, accompanied by a diverging correlation length in all direc-

tions. In contrast, in our system, the order parameter develops very inhomogeneously

in space with different parts of the system (i.e., different rr regions) ordering inde-

pendently at different λ. Correspondingly, the correlation length in the uncorrelated

directions remains finite across the transition. This defines a smeared transition.

In order to determine the global system properties in the vicinity of the smeared

transition, we combine (2.2) and (2.3) to obtain the probability for finding a rare

region which becomes active at λc as

w(λc) ∼ exp
(−B(λc − λ0

c)
−drν⊥

)
(2.4)

for λc − λ0
c → 0+. Here, B = p̃Adrν⊥ .

The total density ρ (the total number of active sites) at a certain λ is obtained

by summing over all active rare regions, i.e., all regions with λ > λc. Since the

functional dependence on λ of the density on any given active island is of power-law

type it does not enter the leading exponentials but only the pre-exponential factors.

Thus, the stationary density develops an exponential tail,

ρst(λ) ∼ exp
(−B(λ− λ0

c)
−drν⊥

)
, (2.5)

for all birth rates λ above the clean critical point λ0
c . Analogous arguments can be

made for the survival probability P (λ) of a single seed site. If the seed site is on an

active rare region it will survive with a probability that depends on λ via a power law.

If it is not on an active rare region, the seed will die. To exponential accuracy the

survival probability is thus also given by (2.5). The local spatial density distribution

in the tail of the smeared transition is very inhomogeneous. On active rare regions,

the density is of the same order of magnitude as in the clean system. Away from

these regions it is exponentially small.
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We now turn to the dynamics in the tail of the smeared transition. The long-

time decay of the density (starting from a state with ρ = 1) is dominated by the

rare regions while the bulk contribution decays exponentially. According to finite size

scaling [36], the behavior of the correlation time ξt of a single rare region of size Lr

in the vicinity of the clean bulk critical point can be modelled by

ξt(∆, Lr) ∼ L(zν⊥−z̃ν̃⊥)/ν⊥
r

∣∣∆− AL−1/ν⊥
r

∣∣−z̃ν̃⊥
. (2.6)

Here ∆ = λ−λ0
c > 0, z is the d-dimensional bulk dynamical critical exponent, and ν̃⊥

and z̃ are the correlation length and dynamical exponents of a dr-dimensional system.

To exponential accuracy, the time dependence of the total density is given by

ρ(λ, t) ∼
∫

dLr exp
[−p̃Ldr

r −Dt/ξt(∆, Lr)
]

(2.7)

where D is a constant.

Let us first consider the time evolution at the clean critical point λ = λ0
c . For

∆ = 0, the correlation time (2.6) simplifies to ξt ∼ Lz
r. Using the saddle point method

to evaluate the integral (2.7), we find the leading long-time decay of the density to

be given by a stretched exponential,

ln ρ(t) ∼ −p̃z/(dr+z) tdr/(dr+z) . (2.8)

For λ < λ0
c , i.e, in the absorbing phase, the correlation time of the largest islands

does not diverge but is cut-off by the distance from the clean critical point, ξt ∼ ∆−zν .

The large islands with this correlation time dominate the variational integral (2.7).

This leads to a simple exponential decay with a decay constant τ ∼ ∆−zν

The most interesting case is λ > λ0
c , i.e., the tail region of the smeared tran-

sition. Here, we repeat the saddle point analysis with the full expression (2.6) for
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the correlation time. For intermediate times t < tx ∼ (λ − λ0
c)
−(dr+z)ν⊥ the decay of

the average density is still given by the stretched exponential (2.8). For times larger

than the crossover time tx the system realizes that some of the rare regions are in

the active phase and contribute to a finite steady state density. The approach of the

average density to this steady state value is characterized by a power-law.

ρ(t)− ρ(∞) ∼ t−ψ . (2.9)

The value of ψ cannot be found by our methods since it depends on the neglected

nonuniversal pre-exponential factors.

2.4. MONTE-CARLO SIMULATIONS

2.4.1. Simulation method

We now illustrate the smearing of the phase transition by extensive computer

simulation results for a 2d contact process with linear defects (dc = dr = 1). There is a

number of different ways to actually implement the contact process on the computer

(all equivalent with respect to the universal behavior). We follow the widely used

algorithm described, e.g., by Dickman [10]. Runs start at time t = 0 from some

configuration of occupied and empty sites. Each event consists of randomly selecting

an occupied site r from a list of all Np occupied sites, selecting a process: creation

with probability λ(rr)/[1 + λ(rr)] or annihilation with probability 1/[1 + λ(rr)] and,

for creation, selecting one of the neighboring sites of r. The creation succeeds, if this

neighbor is empty. The time increment associated with this event is 1/Np.

Using this algorithm, we have performed simulations for linear system sizes up

to L = 3000 and impurity concentrations p = 0.2, 0.25, 0.3, 0.35 and 0.4. The relative

strength of the birth rate on the impurities was c = 0.2 for all simulations. The

data presented below represent averages of 200 disorder realizations. We have chosen
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Figure 2.1. Overview of the time evolution of the density ρ for a system with L =
3000 and p = 0.2 and several birth rates (λ = 1.68, . . . , 1.62 from top to
bottom) in the vicinity of the clean critical point λ0

c = 1.6488.

these parameters, viz., a low concentration of impurities which have a birth rate

much smaller than the bulk, because these conditions are favorable for observing the

smeared transition in a finite size simulation. If p was too large, the exponential drop-

offs in eqs. (2.5) and (2.8) would be very steep and hard to observe over a significant

range of λ or t, respectively. If c was too close to one, clean critical fluctuations would

mask the tail of the smeared transition.

2.4.2. Time evolution

In this subsection, we discuss the time evolution of the density starting from a

completely occupied lattice, ρ(0) = 1. Figure 2.1 presents an overview of the behavior

of a system with impurity concentration p = 0.2, system size L = 3000, and several

birth rates from λ = 1.62 . . . 1.68. The clean critical point is at λ0
c = 1.6488 [14]. The

figure shows that the long-time decay of the density in the absorbing phase, λ < λ0
c ,

is approximately exponential, in agreement with the expectation discussed after eq.
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Figure 2.2. Left: Logarithm of the density at the clean critical point λ0
c as a function of

tdr/(dr+z) = t0.362 for several impurity concentrations (p = 0.2, . . . , 0.4 from
top to bottom) and L = 3000. The long-time behavior follows a stretched
exponential ln ρ = −Et0.362. Right: Decay constant E of the stretched
exponential as a function of [− ln(1− p)]z/(dr+z) = [− ln(1− p)]0.638.

(2.8) The decay constant of this exponential increases with decreasing λ. In contrast,

for λ > λ0
c the density approaches a nonzero value in the long-time limit. Close to

λ0
c , the density appears to decay, but slower than exponentially.

According to eq. (2.8), the behavior right at the clean critical point, λ = λ0
c , is

expected to be a stretched exponential rather than a simple exponential decay. To

shed more light on the time evolution at λ0
c , the behavior of ln ρ as a function of

tdr/(dr+z) is presented in the left panel of figure 2.2 for several impurity concentrations

p. For our system, dr/(dr + z) = 0.362 with z = 1.76 being the dynamical exponent

of the clean 2d contact process [37]. The figure shows that the data follow a stretched

exponential behavior ln ρ = −Et0.362 over more than three orders of magnitude in ρ,

in good agreement with eq. (2.8). (The very slight deviation of the curves from a

straight line can be attributed to the pre-exponential factors neglected in the extremal

statistics theory). The right panel of figure 2.2 shows the decay constant E, i.e., the

slope of these curves as a function of p̃ = − ln(1 − p). In good approximation, the

values follow the power law E ∼ p̃z/(dr+z) = p̃0.638 predicted in (2.8).
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Figure 2.3. Double-logarithmic plot of the approach of the density to its nonzero
stationary value in the tail of the smeared transition for a system with
p = 0.2 and L = 3000 and birth rate λ = 1.71, 1.70, 1.69, 1.68 (top to
bottom). The long-time behavior is of power-law type, (ρ(t) − ρst) ∼
t−ψ. Fits yield exponents of approximately 1.00, 1.08, 1.12, and 1.28,
respectively.

In the tail of the smeared transition, i.e. for λ > λ0
c the density has a constant

nonzero value ρst = ρ(∞) in the long-time limit. Figure 2.3 illustrates the approach

of the density to this value. It shows ln[ρ(t)− ρst] as a function of ln(t) for several λ.

The long-time behavior is clearly of power-law type, but the exponent depends on λ,

i.e., it is nonuniversal. These results agree with the corresponding prediction in eq.

(2.9).

2.4.3. Stationary state

In this subsection we present and analyze the simulation results for the station-

ary state in the tail of the smeared transition, λ > λ0
c . Figure 2.4 shows a comparison

of the stationary density ρst as a function of λ between the clean system and a dirty

system with p = 0.2. The clean system (p = 0) has a sharp phase transition with a

power-law singularity of the density, ρst ∼ (λ−λ0
c)

β with β ≈ 0.58 in agreement with
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Figure 2.4. Stationary density ρst as a function of birth rate λ for a clean system and
a system with impurity concentration p = 0.2. System size is L = 1000.

the literature [14]. In contrast, in the dirty system, the density increases much more

slowly with λ after crossing the clean critical point. This suggests either a critical

point with a very large exponent β or exponential behavior.

Let us now investigate the behavior of the dirty system in the low-density tail

more closely. In figure 2.5, we plot ln ρst as a function of (λ − λ0
c)
−drν⊥ for several

impurity concentrations p, as suggested by eq. (2.5). The data in the left panel of

figure 2.5 show that the density tail is indeed exponential, following the prediction

ln ρst = −B(λ− λ0
c)
−drν⊥ over at least two orders of magnitude in ρst. (The clean 2d

spatial correlation length exponent is ν⊥ = 0.734 [37].) Fits of the data to eq. (2.5)

are used to determine the decay constants B. The right panel of figure 2.5 shows these

decays constants as function of p̃ = − ln(1 − p). The dependence is close to linear,

as predicted below eq. (2.4) (Slight deviations from the theoretical prediction can
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Figure 2.5. Left: Logarithm of the stationary density ρst as a function of (λ −
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again be attributed to the pre-exponential terms neglected in the extremal statistics

theory.)

2.5. CONCLUSIONS

To summarize, we have provided extensive numerical evidence that extended

impurities destroy the sharp nonequilibrium phase transition in the contact process

by smearing and lead to a (nonuniversal) exponential dependence of the density and

other quantities on the control parameter. These results are in agreement with the

predictions of Ref. [8] which were based on extremal statistics arguments and mean-

field theory. In this section, we compare our findings to the more conventional Griffiths

effects in the contact process with point-like defects[22, 13], and we discuss general

implications for theory and experiment.

Both conventional Griffiths effects and the smearing scenario found in the present

paper are caused by rare large spatial regions which are locally in the active phase

even if the bulk system is not. The difference between Griffiths effects and the smear-

ing of the transition is the result of disorder correlations. For point-like defects, i.e.,
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uncorrelated disorder, the rare regions are of finite size and cannot undergo a true

phase transition. Instead, they fluctuate slowly which gives rise to Griffiths effects.

In contrast, if the rare regions are infinite in at least one dimension, a stronger effect

occurs: each rare region can independently undergo the phase transition and develop

a nonzero steady state density. This leads to a smearing of the global transition.

The smearing mechanism found here relies only on the existence of a true phase

transition on an isolated rare region. It should therefore apply not only to the directed

percolation universality class, but to an entire family of nonequilibrium universality

classes for spreading processes and reaction-diffusion systems. Note that while the

presence or absence of smearing is universal in the sense of critical phenomena (it

depends on symmetries and dimensionality only), the functional form of the den-

sity and other observables is not universal, it depends on the details of the disorder

distribution [27].

Smearing phenomena similar to the one found here can also occur at equilibrium

phase transitions. At quantum phase transitions in itinerant electron systems, even

point-like impurities can lead to smearing [23] (the necessary disorder correlations

are in imaginary time direction). In contrast, for the classical Ising (Heisenberg)

universality class, the impurities have to be at least 2d (3d) for the transition to be

smeared which makes the phenomenon less likely to be observed [27].

In the context of our findings it is worth noting that, despite its ubiquity in

theory and simulations, clearcut experimental realizations of the directed percolation

universality class are strangely lacking [11]. To the best of our knowledge, the only

verification so far has been found in the spatio-temporal intermittency in ferrofluidic

spikes [38]. We suggest that the disorder-induced smearing found in the present paper

may explain the striking absence of directed percolation scaling [11] in at least some

of the experiments.
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3. POINT-LIKE DISORDER IN A CONTACT PROCESS

In the previous section, the infinite nature of the rare regions allowed for in-

dependent ordering, and thus a smearing of the phase transition. In contrast, the

situation for point-like disorder is more conventional, but in a sense more difficult to

analyze. As mentioned in Section 1.2, initial renormalization group (RG) methods and

simulations achieved very little insight into the nature and structure of this system,

producing runaway solutions, and non-universal behavior[13, 14, 15, 16]. Recently,

works by Igloi and collaborators[9] have indicated that for point-like disorder, the

traditional power law scaling ξ‖ ∼ ξz
⊥ is replaced by activated scaling ξ‖ ∼ exp(ξµ

⊥).

As a result, the scaling relationships of time dependent quantities are also modified

at the dirty critical point. The new scaling laws have logarithmic dependence of the

form

Ps(t) ∼ (ln t)−δ

ρ(t) ∼ (ln t)−δ

N(t) ∼ (ln t)θ

(3.1)

rather than the power law forms of equation (1.5) (Igloi et al use θ and ν for the

quantities previously denoted as δ and θ respectively). δ and θ here are also not the

exponents of the clean system but rather ones modified for the dirty system: Igloi

et al[9] predict δ = 0.38197 and θ = 0.75151. These logarithmic scaling laws were

derived by mapping the system onto a quantum Hamiltonian[34, 36], which led it-

self to solution[21] via a real space renormalization group (RG) method, originally

introduced by Ma, Dasgupta, and Hu[35]. This procedure is possible because the

infinite disorder fixed points of the system ensures that the distribution of the ran-

dom parameters broadens without limit at those points, making the RG treatment

asymptotically exact.
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These above methods, and thus the predictions they provide, are only valid for

large disorder cases; for weak disorder (c close to 1 and/or p close to 0) [9] predicts

non-universal power law behavior of the form (1.5) with exponents δ and θ that are

not constants but depend on the disorder strength c and concentration p.

In addition, the Griffiths effects discussed in the Introduction should be valid

for the region λc < λ < λ0
c , with the power law scaling as in the clean case, though

with non-universal exponents that depend on how far into the Griffiths region the

system is[14, 13]

In light of the above predictions in the liturature, three questions naturally

follow. 1) Is there any numerical evidence of an infinite randomness fixed point? 2)

What is the real nature of the critical behavior, and is it true that in the long term

limit (asymptotic behavior) the behavior is universal? 3) Is there evidence for the

Griffiths effects within the assumed Griffiths region? The goal of the simulations

performed is to show that the answer to all three of these questions is, in fact, yes.

3.1. SIMULATIONS AND RESULTS

The 1D contact process has been simulated using the algorithm described in

the first section with linear system sizes ranging from L = 103 to 107, disorder con-

centration p = 0.2 to 0.5, and disorder strength c = 0.2. All quantities recorded are

averages over 200 disorder realizations.

The first behavior to be analyzed is the behavior of the disordered system at the

clean critical point λ0
c . Because this is the value where the clean system is on the cusp

between order and disorder, so no region can truly order, or fail to order, the fact

that the rare regions are of infinite size in the correlated disorder case, and of finite

size in the point-like disordered case cannot matter, since the rare regions exhibit the

same behavior as the clean case, i.e. they fail to ever become truly static. Due to

this fact, the system cannot distinguish between the two disorder cases. Following
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the same arguments as in Section 2, the behavior expected is that of equation (2.8),

with the 1d rather than the 2d value of z. Figure 3.1 illustrates that this is indeed

the case.

The next question to be addressed was that of the universality of the behavior

at the dirty phase transition. Current techniques do not allow a calculation of λc

from known parameters, however upper and lower bounds are easily established. The

lower bound for λc is λ0
c , and an upper bound is the first value of λ for which a

stationary density ρst > 0 can be established. Sampling over λ values between these

two bounds, and looking for the expected scaling behavior will give the value of λc for

the particular parameter set used. The expected scaling, as derived from Igloi[9] is

ln(t) ∼ ρ−1/δ to exponential accuracy(see equation (3.1)). There will be a p dependent

prefactor, but −1/δ itself should be universal. Figure 3.2 illustrates how the behavior

of the system for p = 0.3 and c = 0.2 changes as a function of λ. It shows ρ−1/δ with
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the expected value of δ as a function of ln t. Where the curve turns up in the plot,

the system is subcritical. Where the curve turns down, the system is supercritical.

The λ value for which the line remains straight at large t is the critical case, λ = λc.

Figure 3.3 shows the critical cases for several values of p. All curves are straight lines

for large t, thus, the power −1/δ is indeed universal, though the prefactor is not.

Why this differs from Igloi’s and Dickman’s simulations can be answered by looking

at the time scale for which the asymptotic behavior starts to become valid. Both Igloi

and Dickman stopped their simulations at t ≈ 105, i.e. ln t ≈ 11, but as the graph

shows, this is just when the universal behavior is starting to emerge. The apparent

contradiction is thus explained.

While graphs are only provided for the case of varying impurity concentration

p, simulations are currently being performed to investigate the effects of variations

in the impurity strength c. Igloi claimed universality for strong disorder cases, and

even in the case of the small p, it could be argued that despite the rare nature of the
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disordered points, the strength of them keeps this in the realm of strong disorder.

Simulations with c = 0.4 and c = 0.6 have already been performed, and show no

qualitative differences from the c = 0.2 shown here. Runs with c = 0.8 are currently

in progress, and should they continue the trend, as seems likely, this should firmly

set to rest any questions of universal behavior only being valid for strong disorder.

As somewhat of an aside, Figure 3.4 illustrates the expected behaviors of Ps(t)

and N(t). The left panel plots Ps(t) in analogous form as ρ(t) in Figures 3.2 and 3.3.

At long time the curve is a straight line, showing the agreement with the predicted

form. The right panel shows the number of sites of a surviving cluster, which can be

expressed as N(t)/Ps(t) ∼ (ln t)θ+δ.

Lastly, the question of Griffiths effects remains to be addressed. In this region

between λc and λ0
c we expect behavior of the form ρ(t) ∼ tx where x is a function of

(λ− λ0
c). Figure 3.5 illustrates that behavior.
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0.8822 as a
function of the logarithm of time, for p = 0.3 c = 0.2 L = 1 ∗ 106 and
λ = λc. The inclusion of Ps and δ were necessary due to the way N was
calculated(see text)

3.2. CONCLUSIONS

Hopefully the graphs and short explanations above have answered the questions

asked above. As seen in the Figure 3.2 the 1d contact process exhibits activated scaling

at the clean critical point, in accordance with the predicted form. This demonstrates

the presence of an infinite randomness fixed point, of the sort discussed throughout

this paper. The scaling of the system for different values of c and p was shown to

be universal, in contrast with prior predictions, and the extremely slow dynamics

of the system have been offered as an explanation of this discrepancy. Lastly the

scaling behavior in the region between λc and λ0
c was examined, and power laws with

non-universal exponents were shown, establishing that region as a Griffiths region.
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4. CONCLUSIONS

To summarize, Monte-Carlo simulations of the 1d and 2d contact process have

provided extensive numerical evidence that extended impurities destroy the sharp

nonequilibrium phase transition in the contact process by smearing and lead to a

(nonuniversal) exponential dependence of the density and other quantities on the

control parameter. These results are in agreement with the predictions of Ref. [8]

which were based on extremal statistics arguments and mean-field theory. In contrast,

point-like defects retain the sharp phase transition, but with activated dynamical

scaling, as predicted by the Renormalization Group solved in Ref [9], where an infinite-

randomness fixed point was found. However in contrast to the predictions of this

reference, no evidence was found for non-universal behavior. At sufficiently long

times the critical behavior is universal for all disorder strengths.

Both conventional Griffiths effects and smearing are caused by rare large spatial

regions which are locally in the active phase even if the bulk system is not. The

difference between Griffiths effects and the smearing of the transition is the result

of disorder correlations. For point-like defects, i.e., uncorrelated disorder, the rare

regions are of finite size and cannot undergo a true phase transition. Instead, they

fluctuate slowly which gives rise to Griffiths effects. In contrast, if the rare regions are

infinite in at least one dimension, a stronger effect occurs: each rare region can inde-

pendently undergo the phase transition and develop a nonzero steady state density.

This leads to a smearing of the global transition.

In the context of these findings it is worth noting that, despite its ubiquity in

theory and simulations, clearcut experimental realizations of the directed percolation

universality class are strangely lacking[11]. It is suggested that the disorder-induced

smearing or the activated scaling of the infinite randomness critical point found in
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this paper may explain the striking absence of directed percolation scaling in at least

some of the experiments.



APPENDIX A.

PROGRAMMING IMPLEMENTATION AND SOURCE CODE
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It is useful to consider the exact implementation of the simulation used to gen-

erate the results presented before, in the interests of confirmation and reproducibility.

The code was run in a parallel environment controlled by MPI. Each machine

set up an independent lattice field, starting from a full site, and evolved the system

according to random numbers generated from a specified starting seed, which was

sequentially assigned to the involved machines. This allowed reproducible results,

while still allowing for each run to proceed independently of the others.

The dynamical quantities kept by the system consisted of the following: A list of

each site ordered by cartesian coordinates, and containing the occupancy status of the

site, as well as whether it was a disorder site or not. A separate list of all occupied

sites, in no particular order, used for random selection purposes. The number of

occupied sites Np, the time t, and the next expected output time. Static quantities

kept by the system were the dimensionality, the values of λ p and c, the size of the

system, the total time of the simulation, the seed used for the RNG, the number of

computers participating in the parallel system, the individual machines place within

that group of computers, and the total number of realizations to perform.

At any given point in time each site is associated with either a 0, representing

an unoccupied site, or a 1, representing an occupied site. The system is allowed to

evolve in time by picking a single occupied site from the list of them at random, and

selecting either creation, at probability λ(~r)/(λ(~r) + 1) or annihilation at probability

1/(λ(~r) + 1), where λ(~r) is the value of the control parameter at the originating site.

If creation is selected, one of the 2d nearest neighbors is selected at random, and its

value is examined. If it is unoccupied, its value is set to 1, and Np is incremented,

otherwise nothing happens. If annihilation is selected, the chosen site’s value is set to

0. In all of these cases, time is then advanced by 1/Np, where Np is the total number

of infected individuals. The time is then compared to the next expected output time,

and if it meets or exceeds it, the value is recorded in the output array. Because of

the needed discretization, and the random nature of the evolution of Np the recorded

values for different systems will not always have identical time stamps, but they will

be very close, compared to the time scales of interest. To illustrate this, consider

that at small values of t where these differences would be most apparent, Np will be

very large, and thus ∆t will be small compared to t, as t increases, the dynamics
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of the system slow down, and the larger variance in t matters comparatively less.

Lastly, t and Np are compared to the exit conditions, namely t > tmax and Np = 0.

If they aren’t met, the whole procedure repeats itself and if so, the system ends the

realization, and starts the next (if needed). At the end of all realizations, the system

collects all of the values, and averages them together, the individual values are not

kept, but could be if situations required them.

What follows now is the source code used to generate the results in section 3. It

differs in a few small ways, and one large way, from the code used for section 2. The

first small difference is of course that since it is a 1d version, all of the information on

the sites that were occupied is stored as simple arrays rather than a more complicated

struct. Output values are also sampled in logarithmic time, rather than linearly, the

larger times required in Section 3 simply resulted in files that were unmanageable

if sampled linearly. Lastly some of the orders in which creation/destruction and

neighbor selection were changed for greater speed.

The large difference (though some may disagree on how big of a difference it is)

is that while the version used for generating the correlated disorder data was written

in C++, this is written in old-style C. The reason for this change is that as it became

apparently that the pointlike disorder realizations were going to require much more

extensive simulations, optimization of code became more of a concern. When the

time scale of the C++ code was compared to some reference F90 code written by

Thomas Vojta, a factor of 5 difference was quickly noticed. After some optimizations

to make the C++ code’s structure identical to that of the F90 code, a factor of 3

speed difference was still evident, much larger than the 10-15% advantage typically

accepted as normal within the community. Several different compilers were tried, as

well as larger runs, establishing that this was A) indeed a multiplicative, rather than

an additive difference, and B) that it was not an oddity of a particular complier.

As an experiment, the C++ wrapper was removed from the RNG, which was

the only C-style incompatible portion of the code, and the speed difference dropped to

the accepted 10% margin. This is provided as a cautionary tale to any others involved

in computational physics, sometimes almost trivial difference, (such as a simple code

wrapper) can have very large performance impacts.
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#define versionN 2.3.2p

#define dimension 1

/*

Version 2.2.0

First working version, parallel, 2-D

Finished 11-2-04

Version 2.3.0

First working 1-D version

Version 2.3.1

Bunch of changes, slight speed optimizations

Switched to logarithmic output in time

Version 2.3.2

More speed optimizations, switched to straight C

*/

#include <stdio.h>

#include <math.h>

#include "mpi.h"

int MySize; int MyRank;

double rho_final[500]; int occupancy[1000000]; // the occupied

sites array}

char occupied[1000000]; //table of occupied sites

double P_Compare[1000000];

double rho_array[500]; double time_array[500];

double rho_index[24000]; //for gathering all of the different runs

int num_cycles;

int start_seed;
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int time_max;

int array_size;

int cycle (double, double, double, int, int); double rlfsr113 ();

void lfsrinit(long idum);

int main (int argc, char* argv[]) {

MPI_Init(&argc,&argv); //declaring parallell array

MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);

MPI_Comm_size(MPI_COMM_WORLD, &MySize);

int length_d1; //dimension parameters

double lambda_min; //set of lambda parameters

double lambda_max;

double lambda_step;

double dilution; //set of impurity parameters

double impurity_strength;

FILE* iFile;

iFile = fopen("input1d.txt","rt"); //input parameter file

fscanf (iFile, " %i",&num_cycles); //defining global values

fscanf (iFile, " %i",&start_seed);

fscanf (iFile, " %i",&time_max);

fscanf (iFile, " %i",&length_d1); //reading in local values

fscanf (iFile, " %lf",&lambda_min);

fscanf (iFile, " %lf",&lambda_max);

fscanf (iFile, " %lf",&lambda_step);

fscanf (iFile, " %lf",&dilution);

fscanf (iFile, " %lf",&impurity_strength);

fclose(iFile);

double lambda_current=lambda_min;

int num_runs = num_cycles/MySize;

array_size=20*log(time_max)+1;

while ( lambda_current < lambda_max)

{

for (int count = 0; count < num_runs; count++)
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{

int seed=start_seed+(count*MySize)+MyRank;

cycle(lambda_current,dilution,impurity_strength,length_d1,seed);

}

lambda_current+=lambda_step;

}

MPI_Finalize();

return 0;

}

int cycle (double lambda, double P, double C, int d1, int seed) {

double lambda_weak = lambda * C;

double P_Strong = lambda / (1 + lambda);

double P_Weak = lambda_weak / ( 1 + lambda_weak );

int N = 0; //number of occupied sites

lfsrinit(seed); //initialize random number generator

//generate a random arrangement of diluted sites

for (int a=0; a <d1; a++ )

{

if (rlfsr113() <P)

{

P_Compare[a] = P_Weak;

}

else

{

P_Compare[a] = P_Strong;

}

occupied[a] = 1;

}

for (int c=0; c < d1; c++) //initializing all sites to occupied

{

occupancy[N]=c;

N++;

}

int save_count=0;

double save_time=1.0;

double time = 0;
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double time_count=1.0;

for (int aa=0; aa<500; aa++)

{

time_array[aa]= time_count;

time_count*=1.0512710963;

rho_array[aa]= 0;

}

while (time < time_max && N>0)

{

//samples a small set of data points to save file space

if (time>save_time)

{

rho_array[save_count] = (N*1.0)/(d1);

//time_array[save_count] = save_time;

save_time*=1.0512710963;

save_count++;

}

time += (1.0 / N);

int select = N * rlfsr113(); //picking a random site

int x = occupancy[select];

int x_step=0;

int new_x=x;

if ( rlfsr113() > P_Compare[x]) //destruction

{

occupied[x] = 0;

occupancy[select]=occupancy[N-1];

N--;

}

else

{

if ( rlfsr113() < .5) //picking left or right neighbor

{

new_x++;

if (new_x==d1)

{
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new_x=0;

}

}

else

{

new_x--;

if (new_x==-1)

{

new_x=d1-1;

}

}

if ( occupied[new_x]==0 ) //creation

{

occupied[new_x] = 1;

N++;

occupancy[N-1] = new_x;

}

}

}

//only if its the root machine do we do anything with rho_index

if (MyRank==0)

{

for (int a=0; a<24000; a++)

{

rho_index[a]=0;

}

}

//if this is the first run for this machine, initialize output to zeros

if ( (seed - start_seed)%num_cycles == 0)

{

for (int a=0; a<500; a++)

{

rho_final[a]=0;

}

}

//collect all of the individual runs

MPI_Gather (rho_array,500,MPI_DOUBLE,rho_index,500,

MPI_DOUBLE,0,MPI_COMM_WORLD);
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char filename[100]; //declaring file output information

sprintf(filename, "lambda=%lf_P=%lf_C=%lf_size=%i.txt", lambda, P,C, d1);

FILE* oFile;

oFile = fopen(filename, "wt");

if (MyRank==0) //only if its the root machine do we store values

{

for (int a=0; a<array_size; a++) //going over each of the time steps

{

int index=0;

rho_array[a]=0;

while (index<MySize)

{

//summing up all of the values at each time step

rho_array[a]+= rho_index[a+(index*500)];

index++;

}

//dividing by total number of values to get answer

rho_final[a]+=rho_array[a]/num_cycles;

}

}

// if this is the last cycle for the root machine

if ( seed - start_seed == num_cycles-MySize)

{

// a lot of heading

fprintf (oFile, "#Created with version versionN \n");

fprintf (oFile, "#Parameters are lambda = %lf, array dimension = %i,

seeds = %i to %i \n",lambda,d1,seed + MySize - num_cycles,

seed+MySize-1);

fprintf (oFile, "#Dilution(p) = %lf, Lambda reduction(c) = %lf\n",P,C);

fprintf (oFile, "#Time\tRho\t\t\n");

// old format

//fprintf (oFile, "#SaveCount %i, N%i, time %lf time_max %i\n",

// save_count, N, time, time_max);

for (int output = 0; output<500; output++)

{

if (rho_final[output]>0) //don’t output zero lines.

{

fprintf (oFile, "%lf\t%lf\n", time_array[output],

rho_final[output]);

}

}
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}

fclose (oFile);

return 0;

}

//random number generator starts here, I didn’t write it so I can’t

comment on it.

#define IA 16807 #define IM 2147483647 #define IQ 127773

#define IR 2836

unsigned long z1, z2, z3, z4;

double rlfsr113 ()

{

unsigned long b;

b = (((z1 << 6) ^ z1) >> 13);

z1 = (((z1 & 4294967294) << 18) ^b);

b = (((z2 << 2) ^ z2) >> 27);

z2 = (((z2 & 4294967288) << 2) ^b);

b = (((z3 << 13) ^ z3) >> 21);

z3 = (((z3 & 4294967280) << 7) ^b);

b = (((z4 << 3) ^ z4) >> 12);

z4 = (((z4 & 4294967168) << 13) ^b);

return((z1 ^ z2 ^ z3 ^ z4 ) * 2.3283064365e-10);

}

void lfsrinit(long idum)

{

long k;

double d;

if (idum <= 0) idum = 1;

k=(idum)/IQ;

idum=IA*(idum-k*IQ)-IR*k;

if (idum < 0) idum += IM;

if (idum < 2) z1=idum+2; else z1=idum;

k=(idum)/IQ;

idum=IA*(idum-k*IQ)-IR*k;

if (idum < 0) idum += IM;

if (idum < 8) z2=idum+8; else z2=idum;

k=(idum)/IQ;

idum=IA*(idum-k*IQ)-IR*k;

if (idum < 0) idum += IM;
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if (idum < 16) z3=idum+16; else z3=idum;

k=(idum)/IQ;

idum=IA*(idum-k*IQ)-IR*k;

if (idum < 0) idum += IM;

if (idum < 128) z4=idum+128; else z4=idum;

d=rlfsr113();

}
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[4] Täuber U C 2003 Adv. in Solid State Phys. 43 659

[5] Grassberger P and de la Torre A 1979 Ann. Phys. (NY) 122 373

[6] Liggett T 1985 Interacting Particle Systems (Springer-Verlag). pp 265-314

[7] Goldenfeld N 1992 Lectures On Phase Transitions And The Renormalization
Group (Westview Press, Cambridge MA)

[8] Vojta T 2004 Phys. Rev. E 70

[9] Hooyberghs J, Igloi F and Vanderzande C 2003 Phys. Rev. Lett. 90 100601

Hooyberghs J, Igloi F and Vanderzande C 2004 eprint cond-mat/0402086

[10] Dickman R 1999 Phys. Rev. E 60 R2441

[11] Hinrichsen H 2000 Braz. J. Phys. 30 69

[12] Janssen H K 1997 Phys. Rev. E 55 6253

[13] Noest A J 1986 Phys. Rev. Lett. 57 90

[14] Moreira A G and Dickman R 1996 Phys. Rev. E 54 R3090

[15] Bramson B, Durrett R Schonmann R H 1991 Ann. Prob. 19 960

[16] Cafiero R, Gabrielli A and Muñoz M A 1998 Phys. Rev. E 57 5060
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