Physics 5403: Computational Physics

Instructor: Thomas Vojta

The course has a lecture and a lab component.

Contents of the lectures

1. Introduction

- 1.1 What is computational physics?
- 1.2 Languages and algorithms
- 1.3 Good practise in computational physics
- 1.4 Plan of the course

2. Basic numerical methods

- 2.1 Interpolations and approximations
- 2.2 Differentiation and integration
- 2.3 Zeros and extremes of a single-variable function
- 2.4 Random numbers

3. Ordinary differential equations

- 3.1 Initial value problems
- 3.2 Application: Chaotic dynamics of a driven pendulum
- 3.3 Boundary value problems
- 3.4 Eigenvalue problems
- 3.5 Application: One-dimensional Schrödinger equation

4. Numerical methods for matrices

- 4.1 Matrices in physics
- 4.2 Scientific software libraries
- 4.3 Linear equation systems
- 4.4 Application: Zeros and extremes of a multi-variable function
- 4.5 Matrix eigenvalue problems

5. Spectral analysis

- 5.1 Fourier transformation and orthogonal functions
- 5.2 Discrete Fourier transformation and Nyquist theorem
- 5.3 Fast Fourier transformation
- 5.4 Application: Autocorrelation function and power spectrum of a driven pendulum
- 5.5 Fourier transformation in higher dimension
- 5.6 Application: Scattering cross section and structure factor

5.7 Wavelet analysis

6. Molecular dynamics simulations

- 6.1 Basic machinery
- 6.2 Time integration Verlet algorithm
- 6.3 Geometry and boundary conditions
- 6.4 Running, measuring, analyzing
- 6.5 Molecular dynamics as an optimization tool

7. Monte-Carlo simulations

- 7.1 Sampling and integration
- 7.2 Random walks, self-avoiding walks, and diffusion
- 7.3 Percolation and cluster growths
- 7.4 Metropolis algorithm
- 7.5 The Ising model in statistical physics
- 7.6 Phase transitions and critical behavior

Example Lab Projects (Actual assignments will be posted on the course web page.)

- Warmup and error analysis
- Simulation of radioactive decay
- Diffusion and random walks
- The solar system
- Chaos in the driven damped pendulum
- Quantum eigenstates in a potential well
- Geometric structure of multi charge clusters
- Power spectrum of a driven damped pendulum
- Structure and diffraction patterns of crystals and quasicrystals
- Molecular dynamics simulation of a Lennard-Jones gas
- Percolation and cluster growth
- Critical phenomena in an Ising model