Physics 4311: Thermal Physics – HW Solution 1


due date: Wednesday, Feb 4, 2026

_________________________________________________________________________________________

Problem 1: Joint probabilities (13 points)

The random variables x and y are jointly distributed. x can take values 1, 2, or 3, whereas y can take the values 7 or 8. The joint probabilities are given by p𝑥𝑦(1,7) = 38, p𝑥𝑦(2,7) = 18, p𝑥𝑦(3,7) = 14, p𝑥𝑦(1,8) = 18, p𝑥𝑦(2,8) = 124, p𝑥𝑦(3,8) = 112.

a)

Normalization:

p𝑥𝑦(1,7) + p𝑥𝑦(2,7) + p𝑥𝑦(3,7) + p𝑥𝑦(1,8) + p𝑥𝑦(2,8) + p𝑥𝑦(3,8) = = 38 + 18 + 14 + 18 + 124 + 112 = 1

.

b)

Reduced probabilities:

px(1) = p𝑥𝑦(1,7) + p𝑥𝑦(1,8) = 38 + 18 = 12 px(2) = p𝑥𝑦(2,7) + p𝑥𝑦(2,8) = 18 + 124 = 16 px(3) = p𝑥𝑦(3,7) + p𝑥𝑦(3,8) = 14 + 112 = 13

c)

Reduced probabilities

py(7) = p𝑥𝑦(1,7) + p𝑥𝑦(2,7) + p𝑥𝑦(3,7) = 38 + 18 + 14 = 34 py(8) = p𝑥𝑦(1,8) + p𝑥𝑦(2,8) + p𝑥𝑦(3,8) = 18 + 124 + 112 = 14

d)

Conditional probabilities:

px(2|y = 7) = p𝑥𝑦(2,7) py(7) = 18 34 = 16 px(2|y = 8) = p𝑥𝑦(2,8) py(8) = 124 14 = 16

e)

The variables x and y are statistically independent because p𝑥𝑦(x,y) = px(x)py(y).

Problem 2: Gaussian distribution (15 points)

a)

𝑑𝑥𝑃(x) = 1 C = 1 2𝜋𝐴

b)

x =𝑑𝑥𝑃(x)x = x 0 xM 𝑑𝑥𝑃(x) = 12 xM = x0 d 𝑑𝑥P(x)|x=xp = 0 xp = x0

c)

Second moment and variance

x2 =𝑑𝑥𝑃(x)x2 = x 02 + A σx2 = x2 = x2 = A

Problem 3: Probability of a 10% density fluctuation (12 points)

Consider two identical boxes, A and B.

a)

20 particles are distributed over the two identical boxes A and B at random.

P(10) = 20! 10!10! (1 2 )10 (1 2 )10 = 0.17620 P(11) = 20! 11!9! (1 2 )11 (1 2 )9 = 0.16018 P(11)P(10) = 0.9091

b)

Repeat the calculations for 200 particles.

P(100) = 0.05635 P(110) = 0.02080 P(110)P(100) = 0.3691

c)

Repeat the calculations for 2000 particles.

P(1000) = 0.01784 P(1100) = 8.005 × 107 P(1100)P(1000) = 4.49 × 105