A. Explore a special topic, give in-class presentation

For projects leading to an in-class presentation, please form teams of up to three students. Each presentation topic can be selected only once. Your work should result in a 20 to 25 minute talk explaining the topic to your fellow students. The talks are scheduled for the last week of classes, i.e., for April 30 and May 2, 2024.

1. Real gases, van-der-Waals equation, and the liquid-gas transition

Textbook (Blundell+Blundell), chapters 26, 27, parts of 28 Goldenfield, *Lectures on phase transitions and the renormalization group*, Addison-Wesley, Reading, 1992, chapter 4 (instructor has copy)

2. Bose-Einstein condensation of atomic gases

E.A. Cornell and C.E. Wieman, *Nobel Lecture*, Rev. Mod. Phys. **74**, 875 (2002) J.R. Anglin and W. Ketterle, *Bose-Einstein condensation of atomic gases*, Nature **416**, 211

(2002) W Ketterle Experimental studies of Bose-Einstein condensation in a gas Physics Today

W. Ketterle, *Experimental studies of Bose-Einstein condensation in a gas*, Physics Today, Dec 1999, p30-35

K. Burnett et al., *The theory of Bose-Einstein condensation of dilute gases*, Physics Today, Dec 1999, p37-42

C.J. Pethick and H. Smith, *Bose-Einstein condensation of dilute gases*, Cambridge University Press, 2002

3. Superfluid liquid helium

T. Guenault, *Basic superfluids*, Taylor and Francis, London, 2003, chapters 1 and 2 A.J. Leggett, *Quantum Liquids*, Oxford University Press, 2006, chapter 4

4. Thermodynamics of Earth's atmosphere

Textbook (Blundell+Blundell), chapter 37 Material on the 2021 Physics Nobel Prize on nobelprize.org

5. White dwarf stars and neutron stars

Textbook (Blundell+Blundell), chapters 35 and 36 S.A. Kaplan, *The Physics of stars*, Wiley, Chichester, 1982, chapters 5 and 6 (instructor has copy) D.K. Bathrin, *Statistical Machanics*, Buttermorth Heinemann, Oxford, 1006, castion 8.4

R.K. Pathria, *Statistical Mechanics*, Butterworth-Heinemann, Oxford, 1996, section 8.4 Lecture 29 of David Boal's Astrophysics course, https://www.sfu.ca/~boal/390.html

B. Computer simulation projects, could lead to presentation or term paper

1. Molecular dynamics simulation using Daniel Schroeder's HTML5 applet (does not require coding)

https://physics.weber.edu/schroeder/md/ see article in American Journal of Physics 83 (3), 210-218 (2015), https://physics.weber.edu/schroeder/md/InteractiveMD.pdf

2. Monte-Carlo simulations of a two-dimensional Ising model

(does require coding) • K. P. N. Murthy, An Introduction to Monte Carlo Simulation of Statistical Physics Problems, cond-mat/0104167

• M.E.J. Newman and G.T. Barkema *Monte Carlo Methods in Statistical Physics*, Oxford University Press, Oxford, 1999, chapters 2, 3

• N. Giordano, *Computational Physics*, Prentice Hall, Upper Saddle River, 1997, sections 8.3, 8.4