Physics 4311: Thermal Physics - Homework 8

due date: Tuesday, March 19, 2024, please upload your solution as a pdf on Canvas

Problem 1: Compressibilities of the ideal gas (10 points)

An ideal gas obeys the equation of state $pV = Nk_BT$. The internal energy is $U = (3/2)Nk_BT$. Starting from these relations, compute the following quantities

- a) isothermal compressibility κ_T
- b) adiabatic compressibility κ_S

Problem 2: Entropy of the ideal gas (10 points)

The equation of state of an ideal gas is $pV = Nk_BT$ with p being pressure, V volume, N the number of particles, k_B the Boltzmann constant, and T the temperature. The internal energy is given by $U = (3/2)Nk_BT$.

- a) Start from the first law, dU = T dS p dV, and derive an expression for the entropy of the ideal gas as a function of T and V.
- b) Determine the behavior of S for $T \to 0$. What does the result mean?

Problem 3: Otto cycle (20 points)

The Otto cycle shown in the picture is an idealized version of the process taking place in a gasoline internal combustion engine.

Consider an Otto cycle using a (monoatomic) classical ideal gas of N atoms as working medium. The cycle consists of an adiabatic compression (A \rightarrow B), an isochoric heating (B \rightarrow C), an adiabatic expansion (C \rightarrow D), and an isochoric cooling (D \rightarrow A).

- a) Use the adiabatic temperature-volume relation to express the temperature T_B in terms of T_A , V_A , and V_B . Also express the temperature T_C in terms of T_D , V_A , and V_B .
- b) Find the heat Q_{BC} absorbed in process $B \to C$ and the heat Q_{DA} released in the process $D \to A$ in terms of the temperatures T_A, T_B, T_C , and T_D .
- c) Find the work W done by the engine during one cycle. (Use the 1st law!)
- d) The efficiency of the cycle is defined as $\eta = |W|/Q_{BC}$. Compute the efficiency in terms of the temperatures T_A, T_B, T_C , and T_D .
- e) Show that the efficiency depends on the compression ratio $r = V_A/V_B$ only. Express your result for the efficiency in terms of r.