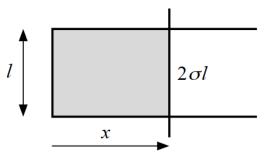
due date: Tuesday, April 9, 2024, please upload your solution as a pdf on Canvas


Problem 1: Elastic rod (16 points)

An elastic rod has an unstretched length L_0 . If it is stretched to length L, the tension force is given by $f = aT^2(L - L_0)$ where T is the temperature and a is a constant. The heat capacity C_L at constant length is given by $C_L = bT$ when $L = L_0$. Here, b is another constant.

- a) Write down the first law in the appropriate variables.
- b) Using a Maxwell relation, find $(\partial S/\partial L)_T$
- c) Compute the change in entropy as the rod is stretched from length L_0 at temperature T_0 to length L at temperature T. (Hint: It may be useful to split the process into one at constant $L = L_0$ and one at constant temperature.)
- d) The rod is stretched adiabatically (thermally isolated) from some initial length L_i at temperature T_i to a final length L_f . Find the final temperature T_f .

Problem 2: Soap film (16 points)

The figure illustrates a soap film (shown in gray) supported by a wire frame. The right cross wire can slide left or right without friction on the rest of the frame. The soap has a positive surface tension σ ; its temperature dependence is given by $\sigma = \sigma_0 - aT$. where σ_0 and a are constants. Note that the film has two surfaces (top and bottom).

- a) Derive an expression for the force of the film on the cross wire. What is the direction of this force?
- b) Write down the first law, i.e., a relation expressing the change dU in internal energy of the film in terms of the heat TdS absorbed by it and the work done on it when the distance x is changed by an amount dx.
- c) Calculate the work done on the film in order to stretch it at a constant temperature T_0 from a length 0 to a length x.
- d) Calculate the change in internal energy $\Delta U = U(x) U(0)$ of the film when it is stretched at a constant temperature T_0 from a length 0 to a length x. [Hint: Use the Maxwell relation arising from the Helmholtz free energy to deal with the heat term in dU).

continued on next page

Problem 3: Magnet (8 points)

The magnetic susceptibility of some magnetic solid is given by the Curie-Weiss law, $\chi = A/(T-T_W)$ where A and the Weiss temperature T_W are constants. How much does the entropy of this solid change if the magnetic field H is increased from 0 to H_0 at fixed temperature T?