Physics 4311: Thermal Physics - Homework 1

due date: Tuesday, Jan 30, 2024, please upload your solution as a pdf on Canvas

Problem 1: Joint probabilities (13 points)
The random variables x and y are jointly distributed. x can take values 0 or 2 , whereas y can take the values 5,7 , or 9 . The joint probabilities are given by $p_{x y}(0,5)=1 / 20, p_{x y}(0,7)=1 / 10$, $p_{x y}(0,9)=1 / 10, p_{x y}(2,5)=3 / 20, p_{x y}(2,7)=3 / 10, p_{x y}(2,9)=3 / 10$.
a) Check that $p_{x y}$ is properly normalized.
b) Compute the reduced probabilities $p_{x}(0), p_{x}(2)$.
c) Compute the reduced probabilities $p_{y}(5), p_{y}(7), p_{y}(9)$
d) Compute the conditional probabilities $p_{x}(0 \mid y=5), p_{x}(0 \mid y=7)$, and $p_{x}(0 \mid y=9)$.
e) Determine whether or not x and y are statistically independent.

Problem 2: Gaussian distribution (15 points)

The continuous random variable x has the probability density

$$
P(x)=C \exp \left[-\frac{(x-b)^{2}}{2 a^{2}}\right]
$$

for all real x (where a, b, and C are constants).
a) Find the value of the constant C (in terms of a and b) such that the probability density is properly normalized.
b) Compute the average $\langle x\rangle$, the median x_{M} and the most probable value x_{P}.
c) Compute the second moment $\left\langle x^{2}\right\rangle$ and the variance σ_{x}^{2}.

Problem 3: Probability of a density fluctuation (12 points)

Consider two identical boxes, A and B.
a) 10 particles are distributed over the two identical boxes A and B at random. Calculate the probabilities $P(4)$ and $P(5)$ for finding exactly $N_{A}=4$ and $N_{A}=5$ particles in box A, respectively. Calculate the ratio $P(4) / P(5)$.
b) Repeat the calculations for 100 particles. Compare the probabilities for $N_{A}=40$ and $N_{A}=50$.
c) Repeat the calculations for 1000 particles. Compare the probabilities for $N_{A}=400$ and $N_{A}=$ 500.
(For large n the factorial can be approximated by Stirling's formula $n!=\sqrt{2 \pi n} n^{n} e^{-n}$)

