Physics 4311: Thermal Physics - Exam 2

Thursday, Apr 11, 2024

Problem 1: Maxwell relations of elastic rod (40 points)
Find all four Maxwell relations for an elastic rod for which the first law reads $d U=T d S+f d L$ where f is the tension force and L is the length of the rod.

Problem 2: Heat pump (30 points)

A house is heated by an ideal heat pump consisting of a Carnot cycle (running backwards). Over the period of an hour, it removes heat Q_{l} from the outside at the lower temperature T_{l} and discharges heat Q_{h} into the house at the (higher) room temperature T_{h}, consuming electric energy (work) E. The amount of heat leaking out of the house through walls and windows per hour is $Q_{\text {loss }}=A\left(T_{h}-T_{l}\right)$ where A is a constant.

Derive an expression for the temperature T_{h} inside the house as a function of T_{l}, E, and A. [Hint: You may start from the efficiency of a Carnot cycle running forward (as heat engine): $|W| / Q_{h}=-W / Q_{h}=1-T_{l} / T_{h}$.]

Problem 3: Entropy in a paramagnet (20 points)

A paramagnetic material at temperature T has the equation of state $m=C B / T$ where m is the magnetization and B is the magnetic field (induction). Derive an an expression for the change in entropy with field at fixed temperature, $(\partial S / \partial B)_{T}$ for this material. [Hint: Derive and use an appropriate Maxwell relation.]

Problem 4: Isobaric-adiabatic cycle (60 points) An ideal gas fulfills the equation of state $p V=N k_{B} T$. It has constant heat capacity c_{p} at fixed pressure and an adiabatic index γ. The gas undergoes the cycle shown in the figure which consists of an isobaric expansion at pressure $p_{2}(\mathrm{~A} \rightarrow \mathrm{~B})$, an adiabatic expansion $(\mathrm{B} \rightarrow \mathrm{C})$, an isobaric compression at pressure p_{1} $(\mathrm{C} \rightarrow \mathrm{D})$, and an adiabatic compression $(\mathrm{D} \rightarrow \mathrm{A})$.

continued on next page
a) Compute the heat $Q_{A B}$ absorbed during the isobaric process $\mathrm{A} \rightarrow \mathrm{B}$ in terms of c_{p} and the temperatures T_{A} and T_{B} at points A and B , respectively.
b) Compute the heat $Q_{C D}$ emitted during the isobaric process $\mathrm{C} \rightarrow \mathrm{D}$ in terms of c_{p} and the temperatures T_{C} and T_{D} at points C and D , respectively.
c) Express the work done on the system during one cycle in terms of the answers to parts a and b.
d) Compute the efficiency of the cycle as a heat engine and express it in terms of the pressures p_{1} and p_{2} (and γ) only. [Hint: It may be helpful to establish a relation between p and T for each of the adiabatic processes, $\mathrm{B} \rightarrow \mathrm{C}$ and $\mathrm{D} \rightarrow \mathrm{A}$.

